• Title/Summary/Keyword: 시멘트 결합재

Search Result 254, Processing Time 0.024 seconds

The Effect of Recycled Aggregate Produced by the New Crushing Device with Multi-Turn Wings and Guide Plate on the Mechanical Properties and Carbonation Resistance of Concrete (다중 회전 날개 및 가이드 판 설치 파쇄장치를 통해 제작된 순환골재가 콘크리트의 역학적 특성 및 탄산화 저항성에 미치는 영향)

  • Cho, Sung-Kwang;Kim, Gyu-Yong;Eu, Ha-Min;Kim, Yong-Rae;Lee, Chul-Min
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.135-142
    • /
    • 2021
  • In this work, multi-turn wings and guide plates are installed on recycled aggregate crushing devices to improve existing low recycled aggregate quality. Simulation analysis to evaluate the crushing efficiency of the new device shows enhanced crushing efficiency since the installation of guide plates shreds most of the inputs inside the crushing drum, and the multi-turn wings and guide plates induce rebound and circulation of the aggregate. Through this, the new device was found to be more economical and efficient than the existing recycled aggregate crushing device. Also, the amount of cement paste and mortar attached to the surface of the aggregate was smaller than that of the existing recycled aggregate, and it was found that the mechanical properties and elastic modulus deterioration were reduced. However, the carbonation resistance of concrete was not improved to the level of natural aggregates due to the remaining tiny cement paste and mortar on the surface of the new recycled aggregate. Therefore, it is deemed necessary to further research and experiment such as device improvement or binder development to reduce durability degradation of concrete mixed with new recycled aggregate.

Investigation on the Mechanical Properties of High-Strength Recycled Fine Aggregate Mortar Made of Nanosilica Dispersed by Sonication (나노실리카 혼입률이 실리카퓸 및 고로슬래그 미분말을 혼입한 4성분계 고강도 순환잔골재 모르타르의 역학적 성능에 미치는 영향)

  • Seong-Woo Kim;Rae-Gyo Moon;Eun-Bi Cho;Chul-Woo Chung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2023
  • In order to maximize the utilization of recycled fine aggregate, high strength mortar made of 100 % recycled fine aggregate was prepared, and its physical properties were evaluated to determine the possibility of using recycled fine aggregate as structural aggregate. The effect caused by the amount of nanosilica on the physical properties of w/b 0.2 recycled fine aggregate mortar consisting of cement, silica fume, and blast furnace slag. To improve the dispersion of nanosilica inside mortar, an aqueously dispersed nanosilica solution by ultrasonic tip sonication was prepared, and incorporated into the mortar to evaluate changes in mortar flow, porosity and compressive strength depending on nanosilica content. According to the experimental results, mortar flow decreased as the replacement ratio of nano-silica increased. As the replacement ratio of nanosilica increased up to 0.75 %, the porosity decreased and the compressive strength increased, but, at a replacement ratio of 1 %, the porosity increased and the compressive strength decreased. It was confirmed that the nano-silica replacement ratio of 0.75 % was optimum proportion to maximize the mechanical performance of high-strength recycled fine aggregate mortar.

The Statistical Hypothesis Verification to Influence of Addition of Metakaolin and Silica Fume on Compressive Strength and Chloride Ion Penetration of High Strength Concrete (메타카올린 및 실리카퓸의 혼입이 고강도 콘크리트의 압축강도와 염소이온 투과에 미치는 영향에 관한 통계적 가설검증)

  • Min, Jeong Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.215-225
    • /
    • 2011
  • Metakaolin is a dehydroxylated form of the clay mineral kaolinite. Rocks that are rich in kaolinite are known as china clay or kaolin, traditionally used in the manufacture of porcelain. The particle size of metakaolin is smaller than cement particles, but not as fine as silica fume. This paper investigates the effect of the concrete containing metakaolin as a mineral admixture on the compressive strength and resistance properties to chloride ion penetration. In this study, the experiment was carried out to investigate and analyze the influence of replacement ratio of metakaolin and micro silica fume on the compressive strength and chlorine ion penetration resistance of concrete. All levels were water/binder ratio 30%, replacement ratio of metakaolin and silica fume were 0, 5, 10, 15, 20% respectively. The compressive strength of concrete using metakaolin tends to increase, as the replacement ratio increases but the chlorine ion penetration resistance was not so as lager as silica fume concrete. Therefore, the optimum mixing ratio of metakaoline to satisfy a properties of compressive strength and chlorine ion penetration resistance was was approximately10%.

Strength Property of Ternary System Non-Cement Matrix according to the Curing Method (3성분계 무시멘트 경화체의 양생방법에 따른 강도특성)

  • Lee, Jin-Woo;Lee, Sang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.389-396
    • /
    • 2014
  • This study was conducted as the basic research for the replacement of Blast Furnace Slag, Red Mud, Silica Fume, etc., with cement as a solution to the problems arising from the global warming caused by the generation of $CO_2$, and conducted the experimental review to examine the feasibility of matrix having properties identical to those of cement by using the Blast Furnace slag, Red mud, Silica fume, and alkali-activator. For this, by using the the inorganic binder, such as Blast Furnace Slag, Red Mud, Silica Fume, etc., and NaOH, $Na_2SiO_3$ and others as the cement substitute material, the strength characteristic according to the mixture time variation was performed in the tentative experiment. Based on the preceding experiment, this study performed the experiment to analyze the strength properties of hardener through the curing by air-dry temperature, curing by temperature in water, coating curing, and Korean paper curing. For the water curing at $80^{\circ}C$, the compressive strength and flexural strength were found to be the most excellent at the age of the 28th day, and furthermore, it was found that the non-cement hardener could be made, which is considered to affect the production of eco-friendly concrete.

EIS monitoring on corroded reinforcing steel in cement mortar after calcium electro-deposition treatment (칼슘 전착처리 후, 시멘트 모르타르 속 철근의 부식속도에 대한 EIS 모니터링)

  • Kim, Je-Kyoung;Kee, Seong-Hoon;Yee, Jurng-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.1-8
    • /
    • 2019
  • The primary purposes of this study are to understand a fundamental effects of electro-deposition on reinforcing steel in saturated Ca(OH)2 electrolyte, and evaluate the corrosion rates of rebars under cyclic 3wt.%NaCl immersion and dry corrosion environment. The three cement mortar specimens with cover thickness 5, 10 and 30mm, were prepared in the experiment. To monitor the corrosion rates of rebars in mortar, the three cement mortar specimens were exposed to 110 wet-drying cycles(8-hour-immersion in 3wt.%NaCl and 16-hour-drying in a room temperature) in the laboratory. During the wet-dry cycles, the polarization resistance, Rp, and solution resistance, Rs, were continuously measured. The instantaneous corrosion rates of rebars on the effect of electro-depositing with sat. Ca(OH)2 electrolyte were estimated from obtained R-1p and degrees of wetness were estimated from Rs values. From the experimental results, the corrosion rates of rebars were greatly accelerated by wet/dry cycles. During the mortars exposed to drying condition, the large increases in the corrosion rates were showed at all rebar surfaces in three mortar specimen, attributed from the accelerated reduction rates of dissolved oxygen in drying process. However, the corrosion rates on rebar surface electrochemically deposited with sat. Ca(OH)2 electrolyte showed the clear decreases, caused by calcium deposits in the porous rust layer.

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

Material Characteristic of POFA Concrete and Its Application to Corrosion Resistance Evaluation (POFA 콘크리트의 재료특성 및 부식 저항성 평가로의 적용)

  • Lee, Chang-Hong;Song, Ha-Won;Ann, Ki-Yong;Ismail, Mohamed Abdel
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.565-572
    • /
    • 2009
  • In this study, corrosion resistance of palm oil fuel ash (POFA) concrete as a blended concrete is evaluated by using electrochemical technique. The POFA is an industrial byproduct obtained from fuel ash after extracting palm oil from palm-tree. In order to obtain basic material characteristics of the POFA concrete, tests on compressive strength, slump, weight loss, bleeding and expansion ratio were carried out the early-aged POFA concrete. On the other hand, durability characteristics, both chloride penetration and carbonation depth test, were also conducted. Finally, corrosion resistance were evaluated by applying electro-chemical artificial crack healing technique, and the tests on the impressed voltage characteristic, galvanic current and linear polarization resistance. From the experimental results, it was found that long-term strength, bleeding, lower slump ratio, expansion ratio, chloride penetration, carbonation and corrosion resistance were improved by using the POFA due to activated pozzolanic reaction. It can be also mentioned that POFA concrete has a potential to be used as a cementitious binder for green-recycling resources.

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

The Verification Of Green Soil Material Characteristics For Slope Protection (사면 보호를 위한 녹생토 재료 특성 검증)

  • Lee, Byung-Jae;Heo, Hyung-Seok;Noh, Jae-Ho;Jang, Young-Il
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.681-692
    • /
    • 2017
  • In recent years, large-scale construction projects such as road pavement construction and new city construction have been carried out nationwide with by the expansion of social overhead facilities and base on the economic development planning, resulting in a rapid increase in artificial slope damage. The existing vegetation-based re-installation method of the slope surface greening method reveals various problems such as lack of bonding force, drying, and lack of organic matter. In this study, research was carried out using vegetation-based material and environmentally friendly soil additives, were are used in combination with natural humus, Bark compost, coco peat, and vermiculite. Uniaxial compressive strength was measured according to the mixing ratio of soil additives and the strength was analyzed. Experiments were carried out on the characteristics of the soil material to gauge the slope protection properties by using the soil compaction test method wherein the soil and the soil additive materials are mixed in relation to the soil height, the number of compaction, the compaction method (layer) and the curing condition. As a result of the experiment, excellent strength performance was demonstrated in soil additives using gypsum cement, and it satisfied vegetation growth standards by using performance enhancer and pH regulator. It was confirmed that the strength increases with the mixing of soil and soil additive, and the stability of slope protection can be improved.

A Study on the Reduced Rebound Method of Surface Finishing Spray Photocatalytic Mortar (표면 마감 광촉매 스프레이 모르타르의 리바운드량 저감 방안 연구)

  • Baek, Hyo-Seon;Park, Jeong-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.604-609
    • /
    • 2020
  • There are various methods of finishing concrete surfaces, and when considering workability, the spray method is effective, but rebound occurs. The allocation of rebound occurrence control should be adjusted according to the materials used. Thus, a basic study was conducted on multiple techniques for reducing the rebound incidence that are suitable for surface finishing materials containing a photocatalyst. A prior study derived the reduction effect and optimal mix ratio for photocatalytic performance. Based on that study, the rebound reduction was verified according to the specifications of the content and the mechanical durability characteristics of the mixed materials. Rebound, compressive strength, flexural rigidity, and table flow tests were done. The flow was fixed at 170±10 mm considering the workability of the mortar spray equipment. For the experimental variables, the rebound number was adjusted to the silica sand variables relative to the cement weight, and silica sands No. 5 and No. 7 were used. The results show the highest compression strength in the final S-1 variable, and the amount of rebound was minimized. These results were sufficiently filled with the bindings of the silica pores, which increased the binding force between the aggregates, resulting in a lower amount of rebound.