• Title/Summary/Keyword: 시멘트모르타르

Search Result 749, Processing Time 0.055 seconds

The Optimal Composition Range of the EVA Powder for Resistance Wheel moving Load of Cement Mortar-Type Surface Finishing Material for Parking Slab (시멘트 모르타르계 주차장 바닥 마감재의 윤하중 저항성능을 위한 EVA 분말수지의 최적 첨가 범위에 관한 실험적 연구)

  • Shao, Xu-Dong;Kwak, Kyu-Sung;Chae, Woo-Byung;Bae, Kee-Sun;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.67-70
    • /
    • 2010
  • This study investigates the physical properties of the acrylic emulsion mortar according to variable composition set of redispersible emulsion powders. This materials have to be composed of many types of binders and chemical additives. So it is difficult to decide suitable mixing proportion of composition materials. The redispersible emulsion powders using "2, 4, 6, 8kg" of EVA polymers dispersion ranges are prepared with acrylic emulsion mortars and were tested for basic characteristics such as flexural, and compressive strength, wheel load. Through experiments we found that the improved formula to satisfy the standard of wheel load by EVA polymers, and the masration rangs between about 2.0% to 2.6% which the white portland cenmet and EVA polymers is good for resistauce wheel load.

  • PDF

Dynamic Properties of the Mortar Utilizing the Polysilicon Sludge as the Cement Admixture Material (시멘트 혼화재로써 폴리실리콘 슬러지를 활용한 모르타르의 역학적특성)

  • Lim, Jeong-Geun;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.240-241
    • /
    • 2014
  • The environmental pollution problem the globally related to global warming arises. In the construction industry the cement mostly use material, generates the great quantity of CO2 among the fired process and the global warming is more aggravated. In addition, the polysilicon that is the main raw material used in the solar power generation, produces 1 ton and the industrial by-product of 2 tons is generated. In this way, the arising sludge there is not method recycling and it is all discarded. Therefore, in this research, try to present as the fundamental research material for using the polysilicon sludge as the admixture of the cement in order to reduce the amount of the cement. The based on 'KS L ISO 679' was progressed mortar test. the liquidity, air flow rate, setting time, water absorption ratio, flexural and compression strength was measured. According to, appropriate replacement ratio of the polysilicon sludge tries to analyze.

  • PDF

Effects of Chemical Admixture on the Paste Fluidity and Mortar Strength Development of High Chloride Cement (염소 고함유시멘트의 페이스트 유동성과 모르타르 강도발현성에 미치는 화학 혼화제의 영향)

  • Jeong, Chan-Il;Park, Soo-Kyung;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.1 s.296
    • /
    • pp.23-31
    • /
    • 2007
  • To examine the effects of chemical admixture on the fluidity and strength development of high chloride cement, experiments were conducted in which lignosulfonate (LS), naphthalenesulfonate (NS), and polycorboxylate (PC) were each added in standard and excessive amounts, and the results were as follows. 1. Because adding KCl to NS causes a decrease in flow, adding PC is better in maintaining high cement fluidity. 2. When cement contained much chloride comes in contact with water, hydration begins 4 h after contact and securing workability becomes difficult, but by adding PC, workability can be secured to 10 h. 3. The bound water ratio and compressive strength in aging 3 days occupy $70\sim80%$ of those in aging 28 days, and the early compressive strength increases not only by adding KCl, but also by chemical admixture. 4. Although compressive strength development is excellent in NS, PC, if NS is added excessively, hydration becomes slow and while the pore structures become slightly minute, the strength development decreases due to severe setting retardation.

Properties of Cement Mortar according to the Kinds and Adding Ratio of Recycling Water-Stabilizing Agent (회수수 안정화제 종류 및 혼입률 변화에 따른 시멘트 모르타르의 특성)

  • 정덕우;김광화;이문환;이세현;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.477-480
    • /
    • 2003
  • This study discusses the fundamental properties of cement mortar with the kinds and adding ratio of stabilizing agent of recycled water. According to the results, fluidity and air content hardly make difference by the kinds and adding ratio of stabilizing agent. When recycled water is used, setting time is shortened slightly in comparison with plain mortar because of an increase of fine particle. And it is similar to the use of recycled water in the case of A, Band D(stabilizing agent), but shortened significantly in the case of C. Also, it does not show difference with variation of the adding ratio, but as the adding ratio increases, it approach to the value of plain mortar. When recycled water is used, compressive strength is similar to plain concrete, and it shows the larger value in order of D, C and A. As the adding ratio of stabilizing agent increases, it decreases at 3days, but increases at 7 and 28days. However, at the adding ratio of 0.5%, it decreases, instead. Length change ratio by drying shrinkage increases in the case of B in comparison with plain mortar, but is similar to plain mortar in the other stabilizing agent. As the adding ratio of stabilizing agent increases, it decreases, however, increases at the adding ratio of 0.5%

  • PDF

A Study on the Retarding effects of Cememtn Mortar Setting (시멘트 모르타르의 응결 지연 효과에 관한 연구)

  • 이재한;이경희;김홍기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.3
    • /
    • pp.307-312
    • /
    • 1996
  • In following addition of 0.3, -0.6, 0.8, 1.0 and 5 weight percent MgSiF66H2O studies have been made of the setting and hardening characteristics of ordinary portland cement. MgSiF66H2O retarded the setting time of ordinary portland cement and extended the induction pariod of the hydration. In ordinary portland cement the setting characteristics were drastically altered especially at high MgSiF66H2O contents. Evidence was also obtained by the formation of a KSiF6 which was very fine particle. The results wee as follows. 1. Slump was slightly decreased when MgSiF66H2O added. 2. Setting time was retarded depending on the amount of retarding agent 2 to 8 hours 3. Compressive strength was almost same or some increased in comparision with opc. 4. When MgSiF66H2O was added to cement paste K2SiF6 were formed It was fine-sized distributed uniformly in cement grain and caused retardation of cement setting.

  • PDF

Physical Properties according to Temperature Change of the Cement-Asphalt Mortar for Precast Slab Track (프리캐스트 슬래브 궤도용 시멘트-아스팔트 유제 혼합 모르타르 충전재의 온도변화에 따른 물리적 특성)

  • Oh, Soo-Jin;Lee, Hu-Sam;Jang, Seung-Yup;Jeong, Yong;Jung, Young-Min;Yoon, Seob
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1273-1278
    • /
    • 2007
  • The cement-asphalt mortar is a mixture of cement and asphalt emulsion, and is utilized as a underpouring materials for the railway track which is used to fill under slab panel space so as to provide a stabilized track support and a tool for reduction of noise and vibration. To increase the workability of grouting, this study investigates the effect of temperature on cement-asphalt mortar by analyzing its physical and mechanical properties before/after hardening according to the temperature (10, 15, 20, 25, $30^{\circ}C$). According to the test results, it is found that as for the physical property of fresh cement-asphalt mortar the more mixture temperature become higher or lower, the more fluidity become worse. But by increasing reducing agent amount and its unit quantity, the required fluidity is met. The compressive strength as physical property of hardened cement-asphalt mortar become lower when temperature is lower but taking it by and large the physical properties of cement-asphalt mortar before/after hardening aren't so affected by temperature and well satisfy the requirement. And it has proved that rate of expansion and freezing and thawing resistance aren't affected by temperature.

  • PDF

Pullout Performance of Reinforcing Fiber Embedded in Nano Materials Cement Mortar with Nano Clay Contents (나노클레이 첨가량에 따른 나노재료 시멘트 모르타르에 정착된 보강섬유의 인발성능)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.113-121
    • /
    • 2013
  • Recently, it has been studied for the application of nano-materials in the concrete. Applied a small amount of nano-materials can achieve the goal of high strength, high performance and high durability. The small addition of nano clay improves strength, thermal stability, and durability of concrete because of the excellent dispersion. The present study has investigated the effectiveness, when varying with the contents of nano clay, influencing the pull-out behavior of macro synthetic fibers in nano materials cement mortar. Pullout tests conducted in accordance with the Japan Concrete Institute (JCI) SF-8 standard for fiber-reinforced concrete test methods were used to evaluate the pullout performance of the different nano clay. Nano clay was added to the 0, 1, 2, 3, 4 and 5 % of cement weight. The experimental results demonstrated that the addition of nano clay led to improve the pull-out properties as of the load-displacement curve in the precracked and debonded zone. Also, the compressive strength, flexural strength and pullout performance and of Mix No. 1 and No. 2 increased up to the point when nano clay used increased by 2 and 3 % contents, respectively, but decreased when the exceeded 3 and 4 %, respectively. It was proved by verifying increase of the scratching phenomenon in macro synthetic fiber surface through the microstructure analysis on the surface of macro synthetic fiber.

Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack (알칼리 활성화 슬래그 시멘트 모르타르의 내황산성)

  • Min, Kyung-San;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.11
    • /
    • pp.633-638
    • /
    • 2007
  • The setting time of alkali activated slag cement tends to be much faster than ordinary Portland cement, and its compressive strength had been higher from the 1 day but became lower than that of the cement on the 28 days. According to the results of the surface observation, weight loss, compressed strength, and erosion depth tests on the sulphuric acid solution. It has been drawn that alkali activated slag cement has a higher sulphate resistance than ordinary Portland cement, and in particular, the alkali activated slag cement added 5 wt% alumina cement has little deterioration on the sulphuric acid solution. The reason why the alkali activated slag cement has higher sulphate resistance than other hardened cement pastes is that it has no $Ca(OH)_2$ reactive to sulphate ion, and there is little $CaSO_4{\cdot}2H_2O$ production causing volume expansion, unlike other pastes. And it is supposed that $Al(OH)_3$ hydrates with high sulphate resistance, which is produced by adding the alumina cement increases the sulfate resistance.

Separation of Recycled Aggregates from Waste Concrete by Heavy Medium Separation (폐콘크리트에서 중액선별(重液選別)을 이용한 재생골재(再生骨材)의 선별(選別))

  • Lee, Myung-Gyu;Kwon, Ki-O;Gayabazar, Ganbileg;Kang, Heon-Chan
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.13-18
    • /
    • 2007
  • The recycled aggregates produced from waste concrete by crushing and granularity adjusting processes only can't be used for structural aggregates because they display low density and high abrasion rate by including lots of mortar and cement paste. However, the recycled aggregates include a lot of aggregates for concrete. Using the heavy medium separation method that is one of the specific gravity separation methods, about 45% of the waste concrete could be converted to the recycled aggregates.

Chracteristics of Cement Mortar Mixed with Incinerated Urban Solid Waste (도시 쓰레기 소각재를 혼입한 시멘트 모르타르의 특성)

  • Chang, Chun-Ho
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.639-646
    • /
    • 2010
  • Differently from fly ash, the bottom ash produced from incinerated urban solid waste has been treated as an industrial waste matter, and almost reclaimed a tract form the sea. If this waste material is applicable to foam concrete as an fine aggregate, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and long-span bridge. This research has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was tested by compression strength, flexural strength, absorption ratio, density, expansion factor. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationship between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a optimal mix design proportion of foam light-weight concrete while bottom ash is used as an fine aggregate of the concrete.