• Title/Summary/Keyword: 시멘트모르타르

Search Result 749, Processing Time 0.032 seconds

Strength Properties of Cement Mortar with Slurry-Typed Cellulous Fiber (슬러리형 셀룰로오즈 파이버를 혼입한 시멘트 모르타르의 강도 특성)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.210-215
    • /
    • 2019
  • Concrete members with wide surface area are vulnerable to cracking due to material behavior such as hydration heat and drying shrinkage. Recently many researches have been performed on improvement of strength and cracking resistance through fiber reinforcement, which are mainly focused on enhancement of tensile strength against cracking due to material behavior. In this paper, CFs(Cellulous Fibers) are manufactured for slurry type, and the engineering properties in cement mortar incorporated with CFs are evaluated for flow-ability, compressive, and flexural strength. Through SEM analysis, a pull-off characteristics of CF in matrix are analyzed. With CF addition of $0.5kg/m^3{\sim}1.0kg/m^3$, flexural strength is much improved and enough toughness of pull-off is also observed unlike plastic fiber containing smooth surface.

Properties of Cement Mortar According to Mixing of Circulating Fluidized Bed Fly Ash and Pulverized Coal Fly Ash based on Blast Furnace Slag (고로슬래그 기반 순환유동층 플라이애시 및 미분탄 플라이애시 혼입에 따른 시멘트 모르타르의 특성)

  • Cho, Seong-Woo;Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.141-148
    • /
    • 2021
  • In this study, the characteristics of the cement mortar replaced with fly ash and ground granulated blast furnace slag generated during circulating fluidized bed combustion method and pulverized coal combustion process were investigated. As a result of the study, when mixed with circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash, it is advantageous not only in terms of strength development but also in terms of durability. The circulating fluidized bed combustor fly ash contributes to the improvement of initial reactivity, and the pulverized coal combustion fly ash is involved in long-term strength development through pozzolanic reaction. Therefore, it can be seen that the mixed use of circulating fluidized bed combustor fly ash and pulverized coal combustion fly ash acts as a complementary factor for cement mortar substituted with ground granulated blast furnace slag.

Assessment of Recovery of Chloride Penetration Resistance of Self-healing Cement Mortars Containing Layered Double Hydroxide (이중층수산화물을 혼입한 자기치유 시멘트 모르타르의 염화물 침투 저항성 회복 평가)

  • Kyung Suk, Yoo;Seung Yup, Jang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.600-608
    • /
    • 2022
  • This study investigates the effect of layered double hydroxide (LDH) on the healing performance of self-healing concrete by assessing the chloride penetration resistance of self-healing cement mortars using electrical chloride ion migration-diffusion test. Test results show that both mortars containing healing materials only and mortars containing healing materials and Ca-Al LDH together mostly had higher migration-diffusion coefficients right after cracking, but the migration-diffusion coefficients decreased more than that of OPC with increasing healing ages, and thus, they yielded higher healing capacities than OPC. Also, mortars containing Ca-Al LDH together with healing materials showed higher reduction of their migration-diffusion coefficients, and thus, higher healing capacities than mortars containing healing materials only. This suggests that as the self-healing product increases on the crack surface, the binding of chloride ions by LDH inside the crack increases.

Optimum Mix Design of Alkali-Activated Cement Mortar Using Bottom Ash as Binder (바텀애쉬를 결합재로 사용한 알칼리 활성화 시멘트 모르타르의 최적배합에 관한 연구)

  • Kang, Su-Tae;Ryu, Gum-Sung;Koh, Kyoung-Taek;Lee, Jang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • In this research, the possibility of using bottom ash as a binder for the alkali-activated cement mortar is studied. Several experiments were performed to investigate the variation of the material properties according to the mix proportion. In the experimental program, the flowability and compressive strength were evaluated for various values of water/ash ratio, activator/ash ratio, sodium silicate to sodium hydroxide ratio, curing temperature, and the fineness of bottom ash as the main variables. The experimental results showed that high strength of 40 MPa or greater could be achieved in $60^{\circ}C$ high temperature curing condition with proper flowability. For $20^{\circ}C$ ambient temperature curing, the 28 days compressive strength of approximately 30MPa could be obtained although the early-age strength development was very slow. Based on the results, the range of optimized mix design of bottom-ash based alkali-activated cement mortar was suggested. In addition, using the artificial neural network analysis, the flowability and compressive strength were predicted with the difference in the mix proportion of the bottom-ash based alkali-activated cement mortar.

Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag (고로슬래그를 사용한 무시멘트 알칼리 활성 모르타르의 유동성과 압축강도)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa;Kang, Hyun-Jin;Jeon, Yong-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.63-71
    • /
    • 2011
  • Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. In this study, we investigated the influence of alkali activator and superplasticizer on the flowability and compressive strength of the alkali-activated mortar in oder to develop cementless alkali-activated concrete using blast furnace slag. In view of the results, we found out that the type and mixture ratio of alkali activator, the type and adding order of superplasticizer results to be significant factors. When cementless alkali-activated mortar using blast furnace slag manufactured with 1:1 the mass ratio of 9M NaOH and sodium silicate, and added superplasticizer before alkali activator in the mixer, we can be secured workability with 180 mm of flow during 1 hours and compressive strength of about 50 MPa under $20^{\circ}C$ curing condition at age of 28days.

  • PDF

Quality of Dry Cement Mortar for Floor Heating Depending on Water-to-Dry Mortar Rutio (난방을 위한 바닥용 건조 시멘트 모르타르의 혼합수량비 변화에 따른 품질 특성)

  • Park, Sang-Jun;Hwang, Yin-Seong;Lee, Gun-Cheol;Kim, Jong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.3
    • /
    • pp.181-188
    • /
    • 2021
  • In this study, the various performance of dry cement mortar for Korean floor heating system depending on water-to-dry mortar ratios (W/DM) applied in project site was evaluated. According to the experiment conducted, the importance of mixing water for dry cement mortar was revealed by resultant performance or quality of the dry cement mortar for floor finishing by changing W/DM controlled in project site by workers. As the general trend, the flow was increased, and the unit volume weight was decreased with increasing W/DM. Additionally, compressive strength and drying shrinkage were significantly influenced by W/DM. Hence, it can be stated that the adding water for dry cement mortar should be managed precisely since excessively increased W/DM for workability improvement can cause performance degradation of floor mortar with the failures such as excessive bleeding, and severe segregation during the fresh state. As a summary of the study, to achieve a desirable performance of dry cement mortar, approximately 20 % of W/DM can be suggested to be managed in project site.

Characterizing Compressive Strength Development in Cement Mortar Utilizing Red Mud Neutralized with Sulfuric Acid (황산 중화 레드머드를 사용한 시멘트 모르타르의 압축강도 발현특성)

  • Kang, Suk-Pyo;Hong, Seong-Uk;Kim, Sang-Jin;Park, Kyu-Eun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.231-240
    • /
    • 2023
  • In this research, our goal was to explore the potential use of cement mortar augmented with liquid red mud. To facilitate this, we neutralized liquid red mud(LR) - exhibiting a pH of 10-12 - using sulfuric acid to yield sulfuric acid neutralized red mud(SR). We then evaluated the flow, setting time, and compressive strength of the cement mortar combined with liquid red mud, while also performing a thorough examination of its chemical properties through X-ray diffraction(XRD) and scanning electron microscopy(SEM). The flow tests indicated a decrease in flow values for both MS-LR and MS-SR in comparison to the Plain. Analogously, the setting time for MS-LR and MS-SR was found to be abbreviated when juxtaposed with the Plain. With regards to compressive strength, MS-LR demonstrated a surge in strength at the 1-day mark, while MS-SR displayed a diminution at the 1-day and 3-day timepoints compared to the Plain. XRD analysis illustrated that after 28 days, the XRD patterns of Plain and MS-SR bore significant resemblance, though a new peak was detected in MS-LR. SEM imagery highlighted that the microstructures of Plain and MS-SR were alike, but MS-LR manifested a distinct microstructure, characterized by a finely fibrous formation. Based on these observations, we infer that the replacement of cement mortar with liquid red mud neutralized with sulfuric acid contributes to a noticeable enhancement in strength, thereby verifying its suitability for this application.

The Inhibition Effect of Alkali-Silica Reaction in Concrete by Pozzolanic Effect of Metakaolin (메타카오린의 포조란 효과에 의한 콘크리트 내 알칼리-실리카 반응 억제 효과)

  • Lee Hyomin;Jun Ssang-Sun;Hwang Jin-Yeon;Jin Chi-Sub;Yoon Jihae;Ok Soo Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.277-288
    • /
    • 2004
  • Alkali-silica reaction (ASR) is a chemical reaction between alkalies in cement and chemically unstable aggregates and causes expansion and cracking of concrete. In the Present study, we studied the effects of metakaolin, which is a newly introduced mineral admixture showing excellent pozzolainc reaction property, on the inhibition of ASR. We prepared mortar-bars of various replacement ratios of metakaolin and conducted alkali-silica reactivity test (ASTM C 1260), compressive strength test and flow test. We also carefully analyzed the mineralogical changes in hydrate cement paste by XRD qualitative analysis. The admixing of metakaolin caused quick pozzolanic reaction and hydration reaction that resulted in a rapid decrease in portlandite content of hydrated cement paste. The expansion by ASR was reduced effectively as metakaolin replaced cement greater than 15%. This resulted in that the amounts of available portlandite decreased to less than 10% in cement paste. It is considered that the inhibition of ASR expansion by admixing of metakaolin was resulted by the combined processes that the formation of deleterious alkali-calcium-silicate gel was inhibited and the penetration of alkali solution into concrete was retarded due to the formation of denser, more homogeneous cement paste caused by pozzolanic effect. Higher early strength (7 days) than normal concrete was developed when the replacement ratios of metakaolin were greater than 15%. And also, late strength (28 days) was far higher than normal concrete for the all the replacement ratios of metakaolin. The development patterns of mechanical strength for metakaolin admixed concretes reflect the rapid pozzolanic reaction and hydration properties of metakaolin.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide (다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.