• Title/Summary/Keyword: 시멘트모르타르

Search Result 749, Processing Time 0.022 seconds

Strength Characteristics of Mortar Mixture Soil with Oyster shell (굴패각을 혼입한 모르타르 혼합토의 강도특성 연구)

  • 윤길림;김병탁;김준형;채영수;서승남;심재설
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.5
    • /
    • pp.51-60
    • /
    • 2001
  • 연안역 굴양식장에서 발생하여 폐기물로 분류되어 불법으로 버려지는 굴패각을 파쇄하여 혼합한 모르타르 혼합토의 특성을 규명하고자 압축강도 시험을 포함한 다양한 실내시험을 수행하였다. 압축강도시험을 위하여 준비한 모르타르 공시체는 시멘트, 물, 모래 및 굴패각을 다양한 배합비로 혼합하여 제작하였다. 강도시험결과에 따르면 분쇄한 굴패각의 비율이 최대 모래중량의 40%까지 혼합한 경우에도 굴패각을 섞지 않은 일반 모르타르 혼합토에 비하여 압축강도가 크게 감소하지 않았다. 본 연구에서 수행한 압축강도실험을 분석한 결과, 다양한 크기로 파쇄한 굴패각을 적절한 혼합비의 모래 및 시멘트와 배합하여 사용한다면 건설재료로서의 재활용 가능성이 충분한 것으로 판단되었다.

  • PDF

Effect of Substrate Surface Water on Adhesive Properties of High Flowable VA/VeoVa-modified Cement Mortar for Concrete Patching Material (단면수복용 고유동성 VA/VeoVa 개질 시멘트 모르타르의 부착특성에 대한 피착면 표면수의 영향)

  • Do, Jeong-Yun;Kim, Doo-Kie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.94-104
    • /
    • 2013
  • Experiments were divided into two parts; one part is to understand the basic properties of high flowable VA/VeoVa-modified cement mortar with different polymer cement ratio (P/C) and the weight ratio of fine aggregate to cement (C:F) and the other part is to investigate the effect of surface water spread on the concrete substrate on adhesion in tension. To understand the basic performance, the specimens were prepared with proportionally mixing VA/VeoVa redispersible powder, ordinary portland cement, silica sand, superplasticizer and viscosity enhancing agent. Here, P/C were 10, 20, 30, 50 and 75% and C:F were 1:1 and 1:3. As the change of P/C and C:F unit weight, flow test, crack resistance and adhesion in tension were measured. Three specimens with good adhesion properties were selected among specimens with different P/C and C:F. The effect of surface water evenly sprayed on concrete substrate on adhesive strength is investigated. The results show that surface water on concrete substrate increases the adhesion in tension of high flowable VA/VeoVa-modified cement mortar and additionally improves the flowability compared to the non-sprayed case.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Bond Properties of Nonpolar Macro Synthetic Fiber in Cement Mortar with Maleic Anhydride Grafted Polypropylene Powder (무수말레인산이 그라프트된 폴리프로필렌 분말 첨가에 따른 시멘트 모르타르와 무극성 마크로 합성섬유의 부착 특성)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.137-143
    • /
    • 2011
  • This study evaluated the effects of maleic anhydride grafted polypropylene powder (mPP) contents on the bond properties of cement mortar and nonpolar macro synthetic fibers (macro synthetic fiber). Dog-bone bond tests were performed to evaluate the bond performance of macro synthetic fiber in cement mortar with varying amounts of mPP (0%, 5%, 10%, 15%, 20%, 25%, 30% of cement weight). The bond properties (pullout behavior, pullout load and interface toughness) of macro synthetic fiber in cement mortar increased as the mPP contents was increased. The bond properties increased with the mPP contents. The microstructure of macro synthetic fiber surface was examined after the pullout test to analyze the frictional resistant force according to mPP contents during the pullout process of macro synthetic fiber in cement mortar. The scratched of macro synthetic fiber increased with the mPP contents.

Effect of Partial Replacement of Water with Photosynthetic Bacteria on the Level of CO2 Absorption in Mortar (광합성균을 혼입한 시멘트 모르타르의 CO2 흡수성능에 관한 기초적 연구)

  • Joung, Jae-Ho;Lee, Gun-Cheol;Yoon, Seung-Joe;Joe, Jae-Heung;Choi, Jung-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • In this research, the $CO_2$ absorption performance of mortar was investigated. The level of $CO_2$ absorption in mortar with various binders including cement and nonsintered cement was examined. As a result for the mortar with photosynthetic bacteria, the compressive strength was similar to the one without the bacteria at early age but decreased at the age of 28 days. However, for the $CO_2$ absorption, with photosynthetic, the performance of the mortar with OPC, and nonsintered cement deceased to 21%(234 ppm) and 19.7%(243 ppm) respectively after 12 hours age.

Bonding Properties of Steel-reinforced Polymer Cement Mortar Evaluated by Pull-off Test and FEM Modeling (폴리머 시멘트 모르타르의 철근부착력 평가를 위한 인발실험과 모델링)

  • Park, Dong-Cheon;Yoneda, Nobutosi;Cho, Bong-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.3
    • /
    • pp.216-222
    • /
    • 2014
  • Chloride attack to reinforced concrete structures located in seaside can cause a serious problem of durability and maintenance during the service life. Corrosion of reinforced steel bars in concrete decreases the bond strength and finally causes the detachment of concrete cover. Polymer cement mortar is usually adopted to repair the deteriorated RC structures because of its strong bonding property. The recovered load-carrying capacity after the repair was simulated by non-linear FEM analysis. The properties of concrete, repairing materials, bonding materials and reinforced bar were used as input data. Four types of redispersible polymer powders were used as components of polymer cement mortar. Pull-off tests were carried out to examine the bond properties such as rigidity and strength. Effects of a corrosion inhibitor and the loss of reinforced bars due to the corrosion were also considered in this study. FEM modeling and analysis were conducted to propose the universal model. Physical bonding in the relationship between repair materials and steel reinforced bar is more dominant than chemical bonding.

An Experimental Study on Electromagnetic Properties in Early-Aged Cement Mortar under Different Curing Conditions (양생조건에 따른 초기재령 시멘트 모르타르의 전자기 특성에 대한 실험적 연구)

  • Kwon, Seung-Jun;Song, Ha-Won;Maria, Q. Feng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.737-746
    • /
    • 2008
  • Recently, NDTs (Non-Destructive Techniques) using electromagnetic(EM) properties are applied to the performance evaluation for RC (Reinforced Concrete) structures. Since nonmetallic materials which are cement-based system have their unique dielectric constant and conductivity, they can be characterized and changed with different mixture conditions like W/C (water to cement) ratios and unit cement weight. In a room condition, cement mortar is generally dry so that porosity plays a major role in EM properties, which is determined at early-aged stage and also be affected by curing condition. In this paper, EM properties (dielectric constant and conductivity) in cement mortar specimens with 4 different W/C ratios are measured in the wide region of 0.2 GHz~20 GHz. Each specimen has different submerged curing period from 0 to 28 days and then EM measurement is performed after 4 weeks. Furthermore, porosity at the age of 28 days is measured through MIP (Mercury Intrusion Porosimeter) and saturation is also measured through amount of water loss in room condition. In order to evaluate the porosity from the initial curing stage, numerical analysis based on the modeling for the behavior in early-aged concrete is performed and the calculated results of porosity and measured EM properties are analyzed. For the convenient comparison with influencing parameters like W/C ratios and curing period, EM properties from 5 GHz to 15 GHz are averaged as one value. For 4 weeks, the averaged dielectric constant and conductivity in cement mortar are linearly decrease with higher W/C ratios and they increase in proportion to the square root of curing period regardless of W/C ratios.

Hardened properties of the cement based Basalt powder sludge mortar for surface preparation (시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성)

  • Jang, Myung-Houn;Choi, Heebok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.451-456
    • /
    • 2015
  • This study aimed to evaluate of the hardened properties (mortar consistency, setting time, absorption properties, drying shrinkage, and bond strength) of the basalt powder sludge mortar recycling a basalt powder sludge occurred during the manufacture process of basalt stone as a replacing material for the sea-sand used to cement filling compound for surface preparation. The hardened mortar made of the basalt powder sludge showed an enhanced performance or similar with the properties of normal mortar used to cement filling compound for surface preparation. But, the drying shrinkage was increased more than a normal cement mortar in the hardened mortar made of the basalt powder sludge since curing 8 - 9days. And the bond strength is low in the hardened mortar used the basalt powder sludge. On the whole, properties of the hardened mortar used the basalt powder sludge correspond to the required minimum quality criterion in the KS F 4716 'cement filling compound for surface preparation'.

Seismic Performance Evaluation of Reinforced Concrete Columns by Applying Steel Fiber-Reinforced Mortar at Plastic Hinge Region (소성힌지부 강섬유 혼입 모르타르 적용 철근콘크리트 기둥의 내진성능평가)

  • Cho, Chang-Geun;Han, Sung-Jin;Kwon, Min-Ho;Lim, Cheong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.241-248
    • /
    • 2012
  • This paper presents a reinforced concrete composite column method in order to improve seismic performance of reinforced concrete column specimens by selectively applying steel fiber-reinforced mortars at the column plastic hinge region. In order to evaluate seismic improvement of the newly developed column method, a series of cyclic load test of column specimens under a constant axial load was investigated by manufacturing three specimens, two reinforced concrete composite columns by applying steel fiber-reinforced mortars at the column plastic hinge region and one conventional reinforced concrete column. Both concrete and steel fiber-reinforced mortar was cast-in placed type. From cyclic load test, it was found that the newly developed steel fiber-reinforced columns showed improved seismic performances than conventional reinforced concrete column in controlling bending and shear cracks as well as improving seismic lateral load-carrying capacities and lateral deformation capacities.

Properties of Mortar Adhered to the Recycled Coarse Aggregate in Cement Paste (시멘트풀 속에서의 순환굵은골재 부착모르타르의 성상변화에 관한 연구)

  • Moon, Dae-Joong;Choi, Jae-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.95-102
    • /
    • 2011
  • Vicker's hardness and pore size distribution of mortar adhered to the recycled coarse aggregate were tested according to the strength level of original concrete of recycled coarse aggregate to find the change of mortar adhered to the recycled coarse aggregate in cement paste. The strength levels of original concrete of recycled coarse aggregate were 25.5MPa, 41.7MPa and 60.1MPa and the aggregates were used at the state of saturated surface dry condition and oven dry condition. The results of this experimentation indicated that the mean value of Vicker's hardness was increased according to age and strength of original concrete of recycled aggregate. Porosity of $100nm{\sim}10{\mu}m$ size was reduced and porosity of 6nm~100nm size was increased in cement paste.

  • PDF