• Title/Summary/Keyword: 시동압력비

Search Result 25, Processing Time 0.019 seconds

Investigation concerning Design Method of the Diffuser Expansion Ratio Commanding a Starting of the Second Throat Exhaust Diffuser for High Altitude Simulation (고도모사용 2차목 디퓨져 시동을 위한 디퓨져 팽창비 설계기법에 관한 연구)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.299-304
    • /
    • 2008
  • Starting characteristics of the axi-symmetric second throat exhaust diffuser (STED) with zero-secondary flows are numerically investigated. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with enhanced wall treatment are solved to simulate the diffusing evolutions of the nozzle plume. Minimum (optimum) starting pressure difference of 20$\sim$25% between 1-D theory and the measured data validated from previous results[5] is also applied to predict the range of an effective diffuser expansion ratio (Ad/At) in this system.

  • PDF

A Study on Detection and Quantification of a Scramjet Engine Unstart (스크램제트 엔진의 비시동 검출과 정량화 연구)

  • Kim, Hyunwoo;Seo, Hanseok;Kim, Jong-Chan;Sung, Hong-Gye;Park, Ik-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.21-30
    • /
    • 2022
  • The restart of scramjet engine is almost impossible in case its unstart happens during engine operation. Therefore, it is essential to prognosticate the scramjet engine unstart phenomena. A numerical simulation of a scramjet engine is conducted to investigate the unstart process of the scramjet engine by adjusting the backpressure at the isolator outlet to the engine analysis environment. The start and unstart of the engine are identified by applying a support vector machine (SVM) through the data measured by wall pressure so that the locations of the pressure sensors most suitable for the unstart detection are selected. And the operation conditions in which the engine is avoid to be unstarted are quantified to perceive the safety margin.

A Study on Performance Characteristics of Second Throat Exhaust Diffuser with Back Pressure (고공환경 모사용 이차목 디퓨저의 배압에 따른 성능 특성)

  • Kim, Wan Chan;Yu, I Sang;Kim, Tae Woan;Park, Jin Soo;Ko, Young Sung;Kim, Min Sang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.563-570
    • /
    • 2017
  • Experimental and numerical studies were performed to investigate the performance and internal flow characteristics of a supersonic second throat exhaust diffuser (STED) with back pressure ($P_a$). An ejector system was used to vary the back pressure ($P_a$) conditions. The operating gas for the STED and the ejector was high pressure nitrogen at room temperature. When the back pressure ($P_a$) at a constant nozzle inlet pressure $P_0$) decreases, the pressure recovery location moves downstream. If the pressure ratio $P_0/P_a$) is the same, even if the nozzle inlet pressures $P_0$) are different, the diffuser's internal flow pattern and starting pressure ratio ($(P_0/P_a)_{st}$) are almost the same.

Research on the Torque and Starting Characteristics of a Turbopump Turbine (터보펌프 터빈의 토크 및 시동특성 연구)

  • Jeong, Eun-Hwan;Lee, Hang-Gi;Park, Pyun-Goo;Hong, Moon-Geun;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.4-10
    • /
    • 2012
  • Torque characteristics of a 75-tonf turbopump turbine was analyzed using the turbine performance test result. Specific torque of the subject turbine could be expressed as a linear function of corrected rotor speed at a fixed pressure ratio and it has been confirmed by the test result. It also found that corrected rotor speed-specific torque characteristics does not change anymore if the turbine pressure ratio is set bigger than a certain value. Using the turbine torque characteristics and pyro-starter performance test results, rotational speed development behavior of the turbopump was predicted. Prediction revealed that the lap time reaching 50% of turbopump design speed is less than 0.7 second. Effect of the thermal loss between pyro-starter and turbopump was negligible.

  • PDF

Investigation into the Hysteretic Behaviors of Shock Wave in a Supersonic Wind Tunnel (초음속 풍동에서 발생하는 충격파 히스테리시스 현상의 연구)

  • Lee, Ik In;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.609-611
    • /
    • 2017
  • The hysteresis phenomena are frequently encountered in the wide variety of fluid flow systems of industrial and engineering applications. Hysteresis mainly appears during the transient change of pressure ratios, and this, in turn, influences the performance the supersonic wind tunnel. However, investigations on the hysteresis phenomenon particularly inside the supersonic wind tunnel are rarely studied. In the present study, numerical simulations are carried out to investigate hysteresis phenomenon of the shock waves inside the Supersonic Wind Tunnel. The unsteady, compressible flow through the supersonic wind tunnel is computationaly analyzed with an symmetric model. The Navier-Stokes equations are solved with Spalart-Allmaras turbulence model using a fully implicit finite volume scheme. The variaton in the flow field between the starting pressure ratio and operating pressure ratio of a supersonic wind tunnel is investigated in terms of hysteresis phenomenon.

  • PDF

Automobile Engine Diagnostic System by Current Monitoring to Self Motor (시동모터 전류 관찰에 의한 자동차엔진 압축압력 검사장치)

  • Hyun, Woong-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Four-stroke cycles in an automobile engine are suction stroke, compression stroke, combustion stroke and exhaustion stroke. A normal operation of engine in compression and power stroke must be processed in optimal fuel-air pressure. In this paper we describe a development of measuring equipment for engine cylinder pressure with observing supply current to self motor(start motor). By comparing the current wave on pressure of the 4 or 6 cylinder in engine, a abnormal cylinder state will be found. The validity of the proposed measuring equipment was shown by experiment for real automobile.

Research on the Torque and Starting Characteristics of a Turbopump Turbine (터보펌프 터빈의 토크 및 시동특성 연구)

  • Jeong, Eunhwan;Lee, Hang-Gi;Park, Pyun-Goo;Hong, Moongeun;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.35-41
    • /
    • 2013
  • Torque characteristics of a turbopump turbine was analyzed using the turbine performance test result. Specific torque of the subject turbine could be expressed as a linear function of corrected rotor speed at a fixed pressure ratio and it has been confirmed by the test result. It also found that corrected rotor speed-specific torque characteristics does not change anymore if the turbine pressure ratio is set bigger than a certain value. Using the turbine torque characteristics and pyro-starter performance test results, rotational speed development behavior of the turbopump was predicted. Prediction revealed that the lap time reaching 50% of turbopump design speed is less than 0.7 second. Effect of the thermal loss between pyro-starter and turbopump was negligible.

Improvement of Starting Performance in Supersonic Exhaust Diffuser with Second Throat for High Altitude Simulation (2차목에 의한 고고도 모사용 초음속 디퓨져 시동성능 향상)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.321-327
    • /
    • 2008
  • Performance characteristics of the axi-symmetric supersonic exhaust diffuser (SED) with a second throat are numerically investigated. Computational strategy repeats those for a straight exhaust diffuser with zero-secondary flows. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. The methodology is validated with accuracy. To predict the improvement of starting performance by second throat diffuser, diffuser characteristic curve due to the SED equipped with the second throat is speculated with respect to that of a straight area type as a function of nozzle stagnation pressure. Principal physics caused by the of the second throst is also addressed in terms of a second throat area ratio.

  • PDF

Improvement of the Startup Transient Analysis on the Liquid Rocket Engine Using the TP+GG Coupled Test Result (터보펌프+가스발생기 연계시험 결과를 이용한 액체로켓엔진 시동 과정에 대한 해석 방법의 개선)

  • Park, Soon-Young;Cho, Won-Kook;Moon, Yoon-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.821-826
    • /
    • 2011
  • The turbopump+gas generator (TP+GG) coupled test for the liquid rocket engine development was performed. By comparing the results of a engine startup transient analysis with this test results, the verification of the analysis model was performed. From this, as to the analysis of the engine startup, the method calculating the pressure ratio of the turbine during the initial stage of startup was improved. And a fact that the transient heat transfer phenomenon between the working fluid and the solid parts of turbine effects to the calculation of turbine pressure ratio and consequentially to the startup analysis was revealed.

  • PDF

An Experimental Study on Design and Starting Characteristics of a Sub-scale Diffuser for Simulating High-Altitude Environment (고고도 환경 모사용 축소형 디퓨저 설계 및 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Yang, Jae-Jun;Kim, Sun-Jin;Kim, Jung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-28
    • /
    • 2009
  • This experimental study was performed to find the important design parameters and the starting characteristics of a supersonic exhaust diffuser. The experimental study was carried out on a scaled down model of straight cylindrical supersonic exhaust diffuser, in order to evaluate the effects of operating fluid(air, nitrogen), the diffuser inlet area over the primary nozzle throat area($A_d/A_t$), the inlet pressure of primary nozzle, diffuser length over diffuser inner diameter($L_d/D_d$) and existence or nonexistence of diffuser divergence. The test results showed that the starting pressure increased with decrease in diameter of primary nozzle, and the measured starting pressure of the diffuser had approximately 90~98% efficiency as compared with the predicted starting pressure. Also, the diffuser was started at all case, regardless of $L_d/D_d$ (above 8.4) and diffuser divergence. The result of this study can be used as an essential database for developing a simulated high-altitude facility for real-scale model.