• Title/Summary/Keyword: 시냅스 가소성

Search Result 8, Processing Time 0.02 seconds

Recent Trends in Low-Temperature Solution-Based Flexible Organic Synaptic Transistors Fabrication Processing (저온 용액 기반 유연 유기 시냅스 트랜지스터 제작 공정의 최근 연구 동향)

  • Kwanghoon Kim;Eunho Lee;Daesuk Bang
    • Journal of Adhesion and Interface
    • /
    • v.25 no.2
    • /
    • pp.43-49
    • /
    • 2024
  • In recent years, the flexible organic synaptic transistor (FOST) has garnered attention for its flexibility, biocompatibility, ease of processability, and reduced complexity, which arise from using organic semiconductors as channel layers. These transistors can emulate the plasticity of the human brain with a simpler structure and lower fabrication costs compared to conventional inorganic synaptic devices. This makes them suitable for applications in next-generation wearable devices and soft robotics technologies. In FOST, the organic substrate is sensitive to the device preparation temperature; high-temperature treatment processes can cause thermal deformation of the organic substrate. Therefore, low-temperature solution-based processing techniques are essential for fabricating high-performance devices. This review summarizes the current research status of low-temperature solution-based FOST devices and presents the problems and challenges that need to be addressed.

Improving LTC using Markov Chain Model of Sensory Neurons and Synaptic Plasticity (감각 뉴런의 마르코프 체인 모델과 시냅스 가소성을 이용한 LTC 개선)

  • Lee, Junhyeok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.150-152
    • /
    • 2022
  • In this work, we propose a model that considers the behavior and synaptic plasticity of sensory neurons based on Liquid Time-constant Network (LTC). The neuron connection structure was experimented with four types: the increasing number of neurons, the decreasing number, the decreasing number, and the decreasing number. In this study, we experimented using a time series prediction dataset to see if the performance of the changed model improved compared to LTC. Experimental results show that the application of modeling of sensory neurons does not always bring about performance improvements, but improves performance through proper selection of learning rules depending on the type of dataset. In addition, the connective structure of neurons showed improved performance when it was less than four layers.

  • PDF

Neuroprotective effects of Extract of Broccoli, Cultivated in Desalinated Magma Seawater, on neuron-like SH-SY5Y cells (제주도 탈염 용암해수 재배로 제조한 브로콜리 추출물의 신경 세포 보호 효과)

  • Rhee, Jin Seol;Jang, Youn Bi;Choi, Ge Sun;Choung, Jai Jun;Kang, Seung Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.448-462
    • /
    • 2020
  • Dietary nutrition is a critical lifestyle factor that can reduce the risk of future cognitive impairments caused by dementia. Accumulating evidence suggests that dietary supplementation with Sulforaphane may help the prevention of cognitive impairments and dementia. Thus, Sulforaphane-enriched broccoli extract would hold promise to improve cognitive impairments of dementia patients. Here, we have used broccoli extracts, prepared from broccoli cultivated in Magma Seawater, to test if the broccoli extracts can be dietary supplement to improve cognitive impairments. Magma Seawater originated from Jeju Island, Korea is unique in terms of containing high concentrations of usable minerals (Zinc, Vanadium and Germanium etc.). Broccoli, grown in Magma Seawater, would contain Sulforaphane and the extra amount of usable minerals. The chemical compositions of the broccoli extracts were analyzed using LC-Q-orbitrap to detect Sulforaphane and Glucoraphanin. Analysis method based on HPLC was developed for measurement of sulforaphane levels in the broccoli extracts. We have tested if the broccoli extracts have anti-apoptotic and anti-inflammatory effects on neuron-like SH-SY5Y cells. In addition, we examined if the broccoli extracts are able to upregulate expression of synaptic plasticity-associated proteins (BDNF and phospho-CREB) and to inhibit acetylcholine esterase (AchE) activity. We have shown that the broccoli extracts inhibited the apoptotic pathway and inflammatory responses. Finally, we present evidence showing that AchE activity was inhibited by the broccoli extracts, but expression of BDNF and phospho-CREB was upregulated. Taken together, these findings suggest that the broccoli extracts from Magma Seawater-grown broccoli would be a good source of dietary nutrition to improve cognitive impairments in the future.

Review of Synaptic Plasticity (시냅스 가소성에 관한 고찰)

  • Kim, Souk-Boum;Kim, Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.1
    • /
    • pp.229-235
    • /
    • 2001
  • Clinical interest has lately been roused by evidence that comprehension of synaptic plasticity may be based on the theoretical opinion. This paper describes perception of synaptic plasticity. Especially processes of long term potentiation(LTP) and long term depression(LTD) are discussed. Recently, it is assessed to genetical parts from development of molecular biology. Therefore this review also represents aspect of molecular events of synaptic plasticity.

  • PDF

Comparisons of the Plastic Changes in the Central Nervous System in the Processing of Neuropathic Pain (신경병증성 통증의 처리 과정에 있어 중추신경계의 가소성 변화 비교)

  • Kwon, Minjee
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.39-48
    • /
    • 2021
  • According to International Associating for the Study of Pain (IASP) definition, neuropathic pain is a disorder characterized by dysfunction of the nervous system that, under normal conditions, mediates virulent information to the central nervous system (CNS). This pain can be divided into a disease with provable lesions in the peripheral or central nervous system and states with an incorporeal lesion of any nerves. Both conditions undergo long-term and chronic processes of change, which can eventually develop into chronic pain syndrome, that is, nervous system is inappropriately adapted and difficult to heal. However, the treatment of neuropathic pain itself is incurable from diagnosis to treatment process, and there is still a lack of notable solutions. Recently, several studies have observed the responses of CNS to harmful stimuli using image analysis technologies, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and optical imaging. These techniques have confirmed that the change in synaptic-plasticity was generated in brain regions which perceive and handle pain information. Furthermore, these techniques helped in understanding the interaction of learning mechanisms and chronic pain, including neuropathic pain. The study aims to describe recent findings that revealed the mechanisms of pathological pain and the structural and functional changes in the brain. Reflecting on the definition of chronic pain and inspecting the latest reports will help develop approaches to alleviate pain.

Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes (단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터)

  • DongJun, Jang;Min-Woo, Kwon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.633-638
    • /
    • 2022
  • Rencently, neuromorphic systems of spiking neural networks (SNNs) that imitate the human brain have attracted attention. Neuromorphic technology has the advantage of high speed and low power consumption in cognitive applications and processing. Resistive random-access memory (RRAM) for SNNs are the most efficient structure for parallel calculation and perform the gradual switching operation of spike-timing-dependent plasticity (STDP). RRAM as synaptic device operation has low-power processing and expresses various memory states. However, the integration of RRAM device causes high switching voltage and current, resulting in high power consumption. To reduce the operation voltage of the RRAM, it is important to develop new materials of the switching layer and metal electrode. This study suggested a optimized new structure that is the Metal/Al2O3/HfOx/SWCNTs/N+silicon (MOCS) with single-walled carbon nanotubes (SWCNTs), which have excellent electrical and mechanical properties in order to lower the switching voltage. Therefore, we show an improvement in the gradual switching behavior and low-power I/V curve of SWCNTs-based memristors.

Expression of Calponin 3 in the Striatum Following 3-Nitropropionic Acid-induced Neurotoxicity (선조체에서 3-nitropropionic acid 투여 후 calponin 3의 발현 연구)

  • Choi, Yun-Sik
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.125-130
    • /
    • 2013
  • Calponin 3 is an F-actin-binding protein and plays a key role in regulating spine plasticity and synaptic activity in neurons. Unlike the other subtypes, calponin 1 and 2, which are expressed in smooth and cardiac muscle cells, calponin 3 is highly expressed in the brain. The goal of this study was to elucidate the spatiotemporal expression pattern of calponin 3 following repeated administration of 3-nitropropionic acid in mice. The repeated administration of 3-nitropropionic acid generated necrotic neuronal cell death in the striatum. Calponin 3 was up-regulated in the neuroprotective penimbral region from 1.5 days after the last injection and thereafter. Double immunofluorescence study revealed that calponin 3 was induced in GFAP-positive astrocytes. These results suggest that calponin 3 induction in the neuroprotective penumbral area following 3-nitropropionic acid intoxication may play a key role in reactive astrogliosis in the striatum.

Wdpcp, a Protein that Regulates Planar Cell Polarity, Interacts with Multi‐PDZ Domain Protein 1 (MUPP1) through a PDZ Interaction (Planar cell polarity 조절단백질 Wdpcp와 multi-PDZ domain protein 1 (MUPP1)의 PDZ 결합)

  • Jang, Won Hee;Jeong, Young Joo;Choi, Sun Hee;Yea, Sung Su;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.26 no.3
    • /
    • pp.282-288
    • /
    • 2016
  • Protein-protein interactions regulate the subcellular localization and function of receptors, enzymes, and cytoskeletal proteins. Proteins containing the postsynaptic density-95/disks large/zonula occludens-1 (PDZ) domain have potential to act as scaffolding proteins and play a pivotal role in various processes, such as synaptic plasticity, neural guidance, and development, as well as in the pathophysiology of many diseases. Multi-PDZ domain protein 1 (MUPP1), which has 13 PDZ domains, has a scaffolding function in the clustering of surface receptors, organization of signaling complexes, and coordination of cytoskeletal dynamics. However, the cellular function of MUPP1 has not been fully elucidated. In the present study, a yeast two-hybrid system was used to identify proteins that interacted with the N-terminal PDZ domain of MUPP1. The results revealed an interaction between MUPP1 and Wdpcp (formerly known as Fritz). Wdpcp was identified as a planar cell polarity (PCP) effector, which is known to have a role in collective cell migration and cilia formation. Wdpcp bound to the PDZ1 domain but not to other PDZ domains of MUPP1. The C-terminal end of Wdpcp was essential for the interaction with MUPP1 in the yeast two-hybrid assay. This interaction was further confirmed in a glutathione S-transferase (GST) pull-down assay. When coexpressed in HEK-293T cells, Wdpcp was coimmunoprecipitated with MUPP1. In addition, MUPP1 colocalized with Wdpcp at the same subcellular region in cells. Collectively, these results suggest that the MUPP1-Wdpcp interaction could modulate actin cytoskeleton dynamics and polarized cell migration.