• Title/Summary/Keyword: 시공조건

Search Result 1,439, Processing Time 0.025 seconds

A Study on Advance Rate under the Operating Conditions of EPB Shield TBM Based on TBM Operation Data (현장 굴진자료 분석에 의한 토압식 쉴드 TBM의 운전조건과 굴진속도 연구)

  • An, Man Sun;Lim, Kwang-Su;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.839-848
    • /
    • 2011
  • TBM (Tunnel Boring Machine) tunnel should be carry out with the adopted machine until the end of excavation because of impossibility of replacement or modification of machine. Observation of the face of the tunnel is difficult, especially in EPB(Earth Pressure Balance) shield TBM, predict changes in the ground condition with analyzing data, collected during the excavation, and it should be reflected in construction. Until recently, subjects of studies on TBM are mainly the determination of machine and the development of advance rate prediction model, according to the characteristics of ground which is the target of excavation. However, study focused on the estimation of ground conditions and the improvement in operational methods using excavation data of TBM equipment, the principal of the excavation, has been done not so much. This study examine the variances in advance rate depending on changes in operating conditions and evaluate the optimal operating conditions of adopt machine, using working data obtained from EPB shield TBM project. The result of this study is suggested as follows. First, cutter head RPM and total thrust force are biggest influences on advance rate, Second, it is recommended for proper advance rate that total thrust force is controlled while optimum cutter head RPM is kept, Third, according to the increasing trend of total thrust force, the changes in ground conditions can be predicted, the appropriate operating conditions can be determined.

Analysis of Advanced Rate and Downtime of a Shield TBM Encountering Mixed Ground and Fault Zone: A Case Study (단층대와 복합지반을 통과하는 쉴드TBM의 굴진율 및 다운타임 발생 특성 분석)

  • Jeong, Hoyoung;Kim, Mincheol;Lee, Minwoo;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.394-406
    • /
    • 2019
  • Difficult ground conditions (e.g., fault zone and mixed grounds) are highly probable to appear in subsea and urban tunnels because of the shallow working depth and alluvial characteristics. TBM usually experienced decrease of penetration rate and increase of downtime when it meets these difficult ground conditions. The problems are usually caused by the adverse geological conditions, and it is preferable to determine the optimal operational parameters of TBM based on the previous operational data obtained while excavating a preceding tunnel. This study carried out for efficient TBM excavation in fault zone and mixed grounds. TBM excavation data from the tunnel site in Singapore and the characteristics of the TBM excavation data was analyzed. The key operational parameters (i.e., thrust, torque, and RPM), penetration rate, and downtime were highly influenced by the presence of fault zones and mixed grounds, and the features was discussed. It is expected that the results and main discussions will be useful information for future tunneling projects in similar geological conditions.

A study on the characteristics of shallow overburden railway tunnel behavior under the existing road (기존도로하부 저토피 통과구간 철도터널 거동특성에 관한 연구)

  • Seo, Yoon-sic;Kim, Yeon-deok;Moon, Gyeong-seon;Kim, Hyeob;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1045-1058
    • /
    • 2017
  • This paper is a study on railway tunnel behavior characteristic of shallow overburden under the existing road. In order to understand the behavior characteristics of the ground deformation during tunnel excavation, a horizontal rod extensometers were installed in the passage area of the shallow overburden tunnel under the road, and the measurement and analysis were carried out. To compare the in situ measurement, three dimensional numerical analysis with ground condition and construction step was carried out using MIDAS NX. As a result of the field measurement, large preceding settlement occurred where the poor ground condition with shallow overburden excavation has been conducted. As a result of the numerical analysis, the largest settlement occurred at the shallow overburden point where the ground condition was poor. Therefore, in the shallow overburden section where the soil condition is poor and a sufficient depth can't be secured and the arching effect of the ground around the tunnel can't be expected, careful attention should be paid to the application of stiffness reinforcement measures and to minimize ground loosening.

Effect of Constrain Condition of Soil Nail Head on Slope Stability (쏘일 네일 두부 구속조건이 사면 안정성에 미치는 영향)

  • Kim, Yongeung;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Natural disasters such as earthquakes and tsunamis occur suddenly, so that they cause massive loss of lives and property. Especially earthquakes represent a particularly severe threat because of the extensive damage accompanied by them. In Korea, an earthquake-resistant design has been rarely applied to a design or construction of slope. However, in resent years, the researches for earthquake-resistance have been performed because the importance on the earthquake-resistance is perceived and highlighted. Soil nail method, one of the slope stability methods, is excellent for its constructability and cost effectiveness, as compared with other stability methods. Also, this method has been widely used for reinforced construction for slope stability. The studies of soil nail method have been performed on the interaction behavior between nails and slopes as well as the varied load condition such as static load, dynamic load and so on. Nevertheless, there has been minimal research regarding the constraint condition of nail head. In this study, the numerical analysis was performed for identifying effect on slope stability for the constrain condition of the soil nail. The result shows that the resistance of constrained the nail head on reinforced slope is larger compared to the one of unconstrained nail head.

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.

Damage monitoring scheme of caisson-type breakwaters (Caisson식 방파제의 손상 모니터링 기법)

  • 박재형;이병준;이용환;김주영;김정태
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.151-156
    • /
    • 2004
  • 최근 국내외에서 국제무역 물량의 증대에 따라 대규모 항만 건설 공사가 진행되고 있으며, 이에 경제성, 시공성이 뛰어난 Caisson 형식의 구조물이 많이 사용되어지고 있다. 특히 항만 및 어항의 외곽시설인 방파제는 계류선박의 안전과 하역 및 적화를 용이하게 하는 중요한 구조물이다. 따라서, 본 연구에서는 Caisson식 방파제에 태풍, 충격력과 같은 몇 가지 외력 조건에 대하여 구조 해석을 실시하여 손상메커니즘을 분석하였다 이러한 손상 메커니즘에 따라 손상을 인위적으로 발생시켜 손상 위치 탐색을 수행하였다.

  • PDF

Effect of Materials and Construction Conditions on Shotcrete Quality (숏콘크리트 품질에 미치는 재료 및 시공 조건의 영향)

  • 현석훈;한기석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.227-232
    • /
    • 1994
  • Recently, TBM (Tunnel Boring Machince) method for a tunnel construction in domestic is very promisible due to shorten a constrution period. It is very important to increase the efficiency of the shotcrete for the TBM. The major factors influencing the efficienty of shotcrete are materials, mix disign, constrution conditions and skill of nozzle-man. In this paper, first, optimum synthesize conditions for the shotcrete accelerators was explored and early stiffenting mechanisms also studied. Second, TBM method was applied for a real job site using the optimum conditions obtained from a lab scale experiment.

  • PDF

공주지역 퇴적암의 풍화특성에 관한 연구

  • 신방웅;최기봉;이봉직;배우석
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.303-308
    • /
    • 1998
  • 암반을 대상으로 하는 건설공사는 많은 시간과 비용, 설계, 시공, 안전상에 많은 문제점을 일으키고 있다. 이러한 암반들은 흡수, 풍화 등에 기인하여 안정성이 약화되어 낙석, 산사태, 붕괴 등의 위험을 안고 있으며 이러한 현상은 우기, 해빙기에 두드러지게 나타나고 있다 비균질, 비등방성의 역학적 성질을 지닌 암석은 변형 거동을 완벽하게 예측하지는 못하고 있는 실정으로 이러한 거동은 암석의 종류와 구성 광물, 내부 불연속면의 상태, 응력 조건과 온도, 습도의 함수비등과 같은 다양한 요소에 의해 영향을 받으며, 이러한 경향은 퇴적암의 경우 두드러지게 나타나고 있다. (중략)

  • PDF

광섬유 센서 및 그 응용

  • 김기수;송영철;방기성
    • Journal of the KSME
    • /
    • v.44 no.6
    • /
    • pp.53-58
    • /
    • 2004
  • 일반적으로 사용단계의 구조물은 시간이 경과함에 따라 초기의 설계, 시공상 오류에 의한 초기결함, 반복하중 그리고 취약한 환경 등 외부 조건에 노출될 경우에는 구조물 본연의 성능을 점차 상실하게 되어 심지어는 인명과 재산권을 위협하는 대형 붕괴사고를 일으키기도 한다. 따라서 구조물의 사용성을 적정 수준 이상으로 유지하기 위해서는 정기적인 점검을 통해 잔존수명을 미리 예측하여야 함은 물론, 최적의 보수시기와 보수방법을 알려줄 수 있는 시설물 모니터링시스템이 요구되고 있다. (중략)

  • PDF