• Title/Summary/Keyword: 시공조건

Search Result 1,434, Processing Time 0.039 seconds

Study on the Application of Retention Money in the FIDIC Conditions of Contract 1999 Edition (FIDIC 계약조건에 적용되고 있는 유보금의 적정성에 대한 연구 (FIDIC 계약조건 1999년판 기준))

  • Hyun, Hak Bong;Park, Hyung Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.497-503
    • /
    • 2018
  • Most of the conditions of contract applied in international construction contracts, including various conditions of contract published by FIDIC, include the provision for Retention Money which inevitably result in negative impact on cash-flow or financial burden to the contractors. In this study, fundamental reasons behind the application of Retention Money provisions are analysed and contractual mechanisms included in the FIDIC conditions of contract are searched, which include provisions for Performance Security and Defects as well as Termination, so that proper judgement can be derived on the application of Retention Money. In conclusion, considering the various contract provisions, performance security, termination of the contract by the Employer etc. included in the FIDIC conditions of contract, it is not necessary to include the provision for Retention Money.

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

A Comparative Study on Construction Method for a Large Underground Station under Pile Supported Bridge (모형실험을 이용한 교량하부 통과 구간 굴착공법 비교 연구)

  • Yoo, Chung-Sik;Chung, Eun-Mok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.177-190
    • /
    • 2017
  • This paper presents the results of an experimental study on the effect of large underground station construction method under an existing pile supported bridge using reduced-scale model tests. A series of tests were conducted on design alternatives using 1g models for different design options for which tunnel structures were created considering the similitude law. Deformation fields obtained using the PIV analysis and LVDTs together with strains in tunnel structures were used to investigate the effect of the construction methods on the pile supported bridge. The results of the tests demonstrated that the pipe roof structure is more efficient in limiting the ground deformation as well as the settlement of bridge foundation than a 2-Arch tunnel. It is also shown that the PIV analysis can be effectively used in analyzing ground tunneling induced ground movement for cases in which a construction sequence governs ground movement.

Evaluation and Adjustment of Lateral Displacement of Complex-shaped RC Tall Buildings Considering the Displacement by Tilt Angle of Each Floor (층경사각에 의한 횡변위를 고려한 비정형 고층건물의 횡변위 평가/보정)

  • Kim, Yungon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.551-558
    • /
    • 2015
  • Lateral displacement in the most complex-shaped tall buildings is caused by eccentric gravity loads which are induced by the difference in location between a center of mass and a center of stiffness. The lateral displacements obtained from analysis, using conventional procedures, are prone to overestimate the actual values because much of realignment efforts made during construction phase are ignored. In construction sequence analysis, the self-leveling of slab and the verticality of columns/walls could be considered at each construction stage. Moreover, the displacement compensation can be achieved by manual process such as re-centering - locating to global coordinates through surveying. Because the lateral displacement increases with the building height, it is necessary to set up adjustment plan through construction stage analysis in advance in order to result in displacements less than the allowable limits. Because analytical solution includes lots of assumptions, the pre-adjusting displacement should be reasonably controlled with considerations for the uncertainty due to these assumptions.

Minimum Thickness Requirements of Flat Plate Affected by Construction Load (시공 하중의 영향을 받는 플랫 플레이트의 최소 두께)

  • Kang, Sung-Hoon;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.650-661
    • /
    • 2003
  • During construction of reinforced concrete building, construction load two times as much as the self weight of a slab, is imposed on the slab, and strength and stiffness of the early-age concrete are not fully developed. As the result, the construction load frequently causes excessive deflection and cracking in the flat plate. The minimum thickness of flat plate specified by the current design codes does not properly address such effect of the construction load. In the present study, a simplified method was developed to calculate the deflection of flat plate affected by the construction load. The proposed method can consider the effects of a variety of design parameters such as the aspect ratio of plate, boundary condition, concrete strength, and construction load. A design equation for the minimum thickness was developed based on the proposed method.

A Study on the Mechanization of the Grounding Rod Earth Construction Method to Improve the Grounding Resistance Characteristics (봉형접지극 접지저항 향상을 위한 기계화 시공 연구)

  • Park, Jung-Shin;Cho, Sung-Jae;An, In-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.143-150
    • /
    • 2009
  • The bar-shaped electrode is very popular in earth construction for its easy obtainments of the regulative grounding resistance values on power distribution systems in many countries. For these reason, a lots of researches are being proceeded on its deformation and materials. But the grounding construction has limit for improvement the grounding resistance characteristics not only by the improvement of the driven electrode, because that the grounding characteristics are very sensitive to soils(hard, soft). This study is about the construction methods on which the driven electrode can be serially or parallely connected using by hollow screw rod for obtaining the regulative grounding resistance values. The experimental results show that the grounding resistance values are reduced more than 30[%] comparing with the other construction methods under the same conditions(earth resistance, numbers of driven electrode, construction method of serial and parallel, chemicals for reducing grounding resistance, water).

Estimation of elastic and plastic zones near a tunnel considering in situ rock mass conditions and the damage induced by excavation (원지반의 암반조건과 시공으로 인한 손상을 고려한 터널주변 탄·소성영역의 산정)

  • Sagong, Myung;Paik, Kyuho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.3
    • /
    • pp.227-235
    • /
    • 2004
  • Tunneling in rock mass produces two types of damages in the vicinity of a tunnel: structural and constructional damages. Structural damage represents the damage induced by the unbalance of geostatic stress caused by the tunneling, and constructional damage is the damage produced during the construction. In this study, formulations of tangential and radial stresses in the elastic and plastic zones near a tunnel, and the calculation of radius of plastic zone surrounding a tunnel are introduced by modifying the Hoek-Brown criterion of 2002 edition, which has capability of considering in situ rock mass characteristics and construction damage. From the parametric study, influences of rock mass quality, uniaxial compressive strength of intact rock, and the dimension of the tunnel on the plastic zone are investigated. The accuracy of the proposed approach is evaluated by comparing with results from the previous study.

  • PDF

A case study on perforation under Daejeon station building by Front-Jacking method (Front-Jacking공법에 의한 대전역사 하부 관통사례)

  • Kim, Yong-Il;Hwang, Nak-Yeon;Jeong, Du-Seok;Cha, Jong-Hwi;Lee, Nae-Yong
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2006.03a
    • /
    • pp.195-203
    • /
    • 2006
  • The crossing construction under railroad have two methods which are cut and cover and trenchless method. first, cut and cover method is an extremely limited method concerning non-running time. Whereas, trenchless method is free from restriction such as train speed and running time, and has the strong points of safe and rapid construction. Front Jacking method, one of the trenchless methods, is frequently applied recently due to its stability during construction and vantage of assuring schedule reliability. The procedure is that after minimizing interlocking friction with structure and earth pressure due to jacking the small steel tube, pulling the precast box manufactured at the field in the ground using PC strand and hydraulic Jack. This method is able to be applied regardless of section size and length of box and condition of ground. And that is also pro-environmental. This paper presents the case of Daejeon E. W. perforate Road Project applied with the Front Jacking method.

  • PDF

A Study of Construction method of installing High-Voltage Lead-in (특고압 인입공사 시공방법연구)

  • Oh, Sung-Chul;Park, Soo-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.1
    • /
    • pp.129-134
    • /
    • 2011
  • The construction method in electrical room with hydro power generation is well informed in drawings and according to this method, to master the actual working conditions. It's necessary to consult location of KEPCO liability threshold with the KEPCO side, therefore make a decision to install the underground cable in hydro power station in each state, including outdoor pipes and manholes. Undulating rigid polyethylene conduit (125C) and CNCV-W extra high cable are laid and installed, to make a closely analysis to the construction by reviewing its process. In this work, the key part of the KEPCO power system for House of Commons is actually based on liability threshold, even including outdoors pipeline construction, high voltage underground electrical wiring and switchgear installation. It directly reveals the contents of the proposed construction methods about Housing Corporation and the High Voltage Switchgear Installation Inlet.

Effects of the Placement Time on the Early-Age Crack Patterns of Concrete Pavements (콘크리트 포장의 포설시기가 시공초기의 균열 발생 패턴에 미치는 영향)

  • Suh, Young Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.135-139
    • /
    • 1993
  • It was found in a series of test sections constructed in Houston, Texas that (1) concrete placement in hot season resulted in much more early-age cracks than that in cool season, and that, (2) for the hot season placement, pavements placed in the morning showed more early-age cracks than those placed in the afternoon. Early-age cracks, in this study, are defined as cracks occurring within a few days after construction. Since the early-age cracks have a tendency to be meandering and the crack widths are relatively wide, they may give an adverse effect on the long-term performance of the pavement. The objectives of this study are to recognize the effects of placement time on the early-age crack patterns and to find the reason of the effects. The effects are explained in this study by relating hydration of cement and surrounding temperature conditions.

  • PDF