• Title/Summary/Keyword: 시공성 평가모델

Search Result 178, Processing Time 0.026 seconds

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.

Developing Aged-Housing Remodeling Technology for Improving Structural and Equipment Performance;Introduction of Center for Aged-housing Remodeling Technology (노후 공동주택 구조 및 설비성능개선 기술 개발;연구단 소개)

  • Han, Ju-Yeoun;Cha, Hee-Sung
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.233-239
    • /
    • 2006
  • As the number of aged-housing has been rapidly increased, many kinds of defects and problems such as degeneration of housing environment, structural performance, and equipment performance have been appeared. The reconstruction as the way to improve the aged-housing has been used mostly because the legal process of the reconstruction is relatively easy. On the other hand, it has caused problems such as the lack of natural aggregate, the environmental damages owing to construction wastes, the loss of national resources, and the lack of the housing for rent nearby the reconstruction area. This problems limit active tying into the reconstruction business at present in the industrial and political perspective. In this context, it is required to revitalize the remodeling rather than the reconstruction. In order to reach this objective, this research aims at identifying the user-oriented performance for the housing industry and developing the new technologies. It is expected that the result of this research can contribute to more revitalize the remodeling as tying researches in terms of design, structure, equipment, and construction.

  • PDF

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Comparison of Empirical Model for Penetration Rate Prediction using Case History of TBM Construction (TBM의 관입속도 예측을 위한 경험적 모델의 비교)

  • Han, Jung-Geun;Kim, Jong-Sul;Lee, Yang-Kyu;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.61-70
    • /
    • 2011
  • This paper describes prediction results of penetration rate using case history in order to compare empirical models for penetration rate prediction of TBM. The reasonable empirical model is evaluated by comparison with prediction results and measured result. The penetration rate prediction is applied in separate empirical models considering rock characteristics and mechanical characteristics of TBM. The rock of applied filed had almost gneiss and its unconfined compressive strength was irregular due to the exist of weak zones and joint. In prediction results using unconfined compressive strength, Graham's model (1976) had impractical result when it had lower strength. NTNU model (1998) of the separate empirical models used in average penetration rate had the highest accuracy by comparison with the others, because it is a reasonable model which has rock characteristics and mechanical characteristics of TBM. However, Tarkoy's model (1986) based on unconfined compressive strength correspond with the measured values in field. Therefore, it should be considered a rock type, geological characteristic and mechanical characteristic of TBM at prediction of penetration rate.

A Study for BIM based Evaluation and Process for Architectural Design Competition -Case Study of Domestic and International BIM-based Competition (BIM기반의 건축설계경기 평가 및 절차에 관한 연구 -국내외 BIM기반 건축설계경기 사례를 기반으로-)

  • Park, Seung-Hwa;Hong, Chang-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.23-30
    • /
    • 2017
  • In the AEC(Architecture, Engineering and Construction) industry, BIM(Building Information Modeling) technology not only helps design intent efficiently, but also realizes an object-oriented design including building's life cycle information. Thus it can manage all data created in each building stage and the roles of BIM are greatly expanded. Contractors and designers have been trying to adopt BIM to design competitions and validate it for the best result in various aspects. Via the computational simulation which differs from the existing process, effective evaluation can be done. For this process, a modeling guideline for each kind of BIM tool and a validation system for the confidential assessment are required. This paper explains a new process about design evaluation methods and process using BIM technologies which follow the new paradigm in construction industry through complement points by an example of a competition activity of the Korea Power Exchange(KPX) headquarter office. In conclusion, this paper provides a basic data input guideline based on open BIM for automatic assessment and interoperability between different BIM systems and suggests a practical usage of the rule-based Model Checker.

Comparison of Error Rate and Prediction of Compression Index of Clay to Machine Learning Models using Orange Mining (오렌지마이닝을 활용한 기계학습 모델별 점토 압축지수의 오차율 및 예측 비교)

  • Yoo-Jae Woong;Woo-Young Kim;Tae-Hyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2024
  • Predicting ground settlement during the improvement of soft ground and the construction of a structure is an crucial factor. Numerous studies have been conducted, and many prediction equations have been proposed to estimate settlement. Settlement can be calculated using the compression index of clay. In this study, data on water content, void ratio, liquid limit, plastic limit, and compression index from the Busan New Port area were collected to construct a dataset. Correlation analysis was conducted among the collected data. Machine learning algorithms, including Random Forest, Neural Network, Linear Regression, Ada Boost, and Gradient Boosting, were applied using the Orange mining program to propose compression index prediction models. The models' results were evaluated by comparing RMSE and MAPE values, which indicate error rates, and R2 values, which signify the models' significance. As a result, water content showed the highest correlation, while the plastic limit showed a somewhat lower correlation than other characteristics. Among the compared models, the AdaBoost model demonstrated the best performance. As a result of comparing each model, the AdaBoost model had the lowest error rate and a large coefficient of determination.

Variations of Coefficient of Earth Pressure at Rest According to Stress Paths for Compacted Residual Soils (다짐 화강풍화토의 응력이력에 따른 정지상태 토압계수의 변화)

  • Lee Byung-Sik;Park Sung-Kook
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.85-93
    • /
    • 2005
  • Earth pressures acting on unmovable rigid walls vary according to loading-unloading conditions due to compaction experienced by backfill soil. Appropriate coefficients of earth pressure at rest with considering this influence need to be determined to estimate earth pressures more reasonably.0 this study, a single cycle hysteretic model simulating soil's loading-unloading-reloading behavior under $K_o-condition$ was reproduced by conducting a series of $K_o-triaxial$ test for compacted residual soils. Based on the results, coefficients of earth pressure at rest at each stage of stress paths such as, virgin loading, unloading and reloading were determined. Also, applicabilities of empirical equations to the estimation of the coefficients were evaluated by comparing the experimental results with those estimated by the equations. As a result, it was concluded that the empirical equations could be applied reasonably to the estimation of the coefficients for compacted residual soils in cases where some amount of error might be acceptable for the reloading stage of the hysteretic model.

A Study on the Using of BIM Data and Template for Construction Progress Management (건설공정관리를 위한 BIM데이터와 템플릿 활용 방안)

  • Oh, Kun-Soo;Park, So-Hyun;Song, Jung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.157-163
    • /
    • 2016
  • BIM is currently applied in some domestic construction firms, but it is not being actively utilized due to changes in working environments and qualms about new studies. In order to utilize a BIM model in the design phase, process information is needed during construction, but the input system and utilization method of the process information's state are not complete. Therefore, we propose a BIM template for construction progress management that can show basic BIM information as the construction progresses in an easy and convenient way. This method will facilitate the adoption of BIM and enhance the productivity of construction companies. To this end, we designed a progress explorer for step-by-step progress and work schedules, and we generated three-dimensional views and a progress list by applying unit information (primary units, part units, and detail units) of the work breakdown structure (WBS) to the parameters. To use the BIM template, work progress information is input to the BIM modeling objects through Dynamo. We also used Dynamo for quick and easy calculation of the quantity of materials needed for construction work. To test the BIM template, we applied it to an actual project and evaluated its visibility and a progress list. The results showed that the proposed BIM template facilitates progress management of a project and can thus facilitate the adoption of BIM and improve the productivity of construction companies.

Evaluation Model for Lateral Flow on Soft Ground Using Commitee and Probabilistic Neural Network Theory (군집신경망과 확률신경망 이론을 이용한 연약지반의 측방유동 평가 모델)

  • Kim, Young-Sang;Joo, No-Ah;Lee, Jeong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.65-76
    • /
    • 2007
  • Recently, there have been many construction projects on soft ground with growth of industry and various construction problems concerning soft soil behavior also have been reported. Especially, foundation piles of abutments and (or) buildings which were constructed on the soft ground have been suffering from a lot of stability problems of inordinary displacement due to lateral flow of soft ground. Although many researches for this phenomena have been carried out, it is still difficult to assess the mechanism of lateral flow on soft ground quantitatively. And reliable design method for judgement of lateral flow occurrence is not established yet. In this study, PNN (probabilistic neural network) and CNN (committee neural network) theories were applied for judgment of lateral flow occurrence based on eat data compiled from Korea and Japan. Predictions of PNN and CNN models for new data which were not used during model development are compared with those predicted by conventional empirical methods. It was found that the developed PNN and CNN models can predict more precise and reliable judgment of lateral flow occurrence than conventional empirical methods.

A Study on Evaluation of Floor Vibration for Steel Frame Modular Housing (철골 조립식주택 바닥판 진동 평가에 관한 연구)

  • Kim, Jong-Sung;Jo, Min-Joo;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.104-111
    • /
    • 2016
  • The steel frame modular housing of which the research and development has been actively carried out recently cannot be constructed through monolithic placement like the reinforced concrete deck of general structure due to the characteristics of construction method of production in the factory and assembly on the site. And floor vertical vibration and deflection caused by inhabitants' activities may become an important issue in the aspect of usability evaluation due to a decrease in the section size of member, a decrease in weight, and so on. Therefore, this study evaluated the vibration performance of deck by using formula of AISC Design Guide 11(hereinafter AISC formula) which was practically used in general for modules where a stud was and wasn't installed at the center of beam in the longitudinal direction in the modular housing to be studied, and examined the applicability of AISC formula through comparison with the results of analysis using a general-purpose analysis program. On the basis of this, a structural cause for an error to occur between analysis result and AISC formula in the deck of module in which a stud was installed was analysed, and measures for considering this were suggested. Besides, an analysis model with the variables of measures for improving the floor vibration performance of modular housing to be studied was established. And measures having excellent vibration performance and economic feasibility were suggested through vibration response analysis and economic evaluation.