• Title/Summary/Keyword: 시공량

Search Result 1,181, Processing Time 0.026 seconds

Construction Stage Analysis of Structure Settlement Using Underpinning (언더피닝 공법을 이용한 구조물 침하에 대한 시공 단계 해석)

  • Lee, Jonghyop;Heo, Seungjin;Ok, Suyeol;Lim, Yunmook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.131-138
    • /
    • 2012
  • This paper aims to present accurately analytical modeling method for underpinning using uncertainty reduction, obtained from comparison between numerical analysis and Site measuring data during construction and service stages. Combination of various conditions should be considered for using numerical analysis to predict the behavior of the structure accurately, even though complexly considered the conditions, real construction should be secured the stability by applying the actual instrument measurement data because predicted results are including the considerable uncertainty. In order to secure the stability during construction, the real time instrument measurements together with numerical analysis results performed before construction state are complementary used actively. From the results of this study, the significant settlements are occurred not only in underpass structure of adjacent excavation area but also in the permanent steel pipe structures were analyzed. From the site measurement results of underpass settlement, the settlements are occurred in every stages of excavation, furthermore observed tendency is asymmetrical excavation patterns are settled more than symmetrical excavation patterns. The essential consideration points for numerical analysis are construction sequence, the direction of the existing facilities, the methods of elements modeling, the applied factors for nature of material and different results would be occurred depending upon inputting the above factors.

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

액화석유가스 20kg용기의 가스누출량에 대한 실험적 연구

  • Lee, Jang-U;Park, Chan-Ok;Yeo, Chang-Hun;Park, Chan-Il
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.4 no.1
    • /
    • pp.82-85
    • /
    • 2004
  • 본 연구는 가스사고의 전형적이고 대표적인 폭발사고와 관련하여 LP가스용기밸브 압력정기, 중간밸브(볼밸브) 및 염화비닐호스로부터의 가스누출량이 어느 정도 되는지에 대하여 이론적으로 계산한 가스누출량과 실제 가스누출량에 대하여 실험을 통하여 연구함으로서 체적공간에서의 폭발과정과 점화원 및 사고경위를 조사하는데 중요한 자료로 활용하고 의도적이거나 취급 또 시공상의 부주의에 의한 가스누출 발생시 사고당시 가스누출량을 확인하는데 활용하고자 연구하게 되었다.

  • PDF

Construction Performance of High Strength Concrete Utilizing Wasted Limestone Coarse Aggregates (석회암 폐석 굵은골재를 사용한 고강도 콘크리트의 시공)

  • Han, Cheon-Goo;Kim, Ki-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.6
    • /
    • pp.545-551
    • /
    • 2015
  • The aim of this research is suggesting application method of the wasted rock obtained from the limestone quarry of raw material for cement as a coarse aggregate for high strength concrete after crushing and sieving processes. The wasted rock has been normally wasted because of its low quality as a material for cement production. In this research, the concrete using this wasted limestone coarse aggregate was evaluated the constructability based on the performances of workability, air content, and compressive strength. From the experiment, a favorable performance was achieved with a limestone coarse aggregate for high strength concrete comparing to the high strength concrete using granite coarse aggregate.

System Development for Analysis and Compensation of Column Shortening of Reinforced Concrete Tell Buildings (철근콘크리트 고층건물 기둥의 부등축소량 해석 및 보정을 위한 시스템 개발)

  • 김선영;김진근;김원중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.291-298
    • /
    • 2002
  • Recently, construction of reinforced concrete tall buildings is widely increased according to the improvement of material quality and design technology. Therefore, differential shortenings of columns due to elastic, creep, and shrinkage have been an important issue. But it has been neglected to predict the Inelastic behavior of RC structures even though those deformations make a serious problem on the partition wall, external cladding, duct, etc. In this paper, analysis system for prediction and compensation of the differential column shortenings considering time-dependent deformations and construction sequence is developed using the objected-oriented technique. Developed analysis system considers the construction sequence, especially time-dependent deformation in early days, and is composed of input module, database module, database store module, analysis module, and analysis result generation module. Graphic user interface(GUI) is supported for user's convenience. After performing the analysis, the output results like deflections and member forces according to the time can be observed in the generation module using the graphic diagram, table, and chart supported by the integrated environment.

Optimal Compensation of Differential Column Shortening in Tall Buildings for Multi Column Groups (고층건물의 멀티 기둥그룹에 대한 부등기둥축소량의 최적보정기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study presents optimal compensation algorithm of differential column shortening for more than two column groups. The proposed algorithm produces the minimum story groups and their compensation thicknesses which satisfy constraint conditions on performance and construction and enables not only the relative compensation but also the mixed compensation considering absolute shortening. The simulated annealing algorithm is used as the main optimization technique. The applicability of the proposed algorithm was verified by applying it to the 61-storey building where compensation of differential column shortening had already been performed. Using, the proposed algorithm compensation was performed easily and the number of compensation was less than the field method.

A Earth-Volume Estimate Model by System Dynamics (시스템 다이내믹스를 활용한 토공량 산정 모형 구축)

  • Hwang, Young-Jo;Won, Seo-Kyung;Han, Choong-Hee;Kim, Sun-Kuk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2006.11a
    • /
    • pp.467-470
    • /
    • 2006
  • The earth volume which is the basis of all the construction has gone through great development so far with the use of construction machine; however, systematic studies on the related area is in need since the appropriate compound engineering method of earth volume equipments which is a key factor for shortening the project duration and cost reduction is not systematically established and it is dependent on experience. Reasonable mechanical earth volume should take into consideration of performance and characteristics of the equipment, the kind of project, scale and conditions in advance. Also, the optimum compound engineering should be planned by selecting several available scales of equipment. In this study, the earth volume estimate model is established for optimum compound engineering of earth volume equipment for mechanized earth volume equipment loading and moving stage among many stages of earth volume task using system dynamics technique. The optimum compound engineering model of the earth volume equipment produced as a result of this is expected to make reasonable decisions in the shortest time in selecting earth volume facility.

  • PDF

A Study on the Ground Settlement and Reinforcement Measures in the Case of Tunnelling at the Yangsan Fault (양산단층대 터널시공에서 침하량 및 보강대책에 대한 연구)

  • Jung, Hyuksang;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.35-48
    • /
    • 2009
  • An excessive ground displacement occurs with excavating tunnel in a fault zone because the fault has properties of soft ground in generally. It may have had a bad influence to adjacent structure. So, rapid reduction of ground strength by groundwater inflow should be prevented. It must be established for an impervious and reinforcing effect of ground to ensure a tunnel stability. The ground settlement and reinforcing effects were estimated by numerical analyses on tunnel through 570 m sector in Yangsan fault zone of Keongbu high-speed railway. Settlements evaluated by numerical analysis is similar to those calculated by using equation of Loganathan & Poulo. It was shown that reliable estimate of ground settlement by applying a prediction equation is possible. Applicability of adopted tunnel reinforcement method in fault zone was investigated by results of pilot construction and numerical analysis. Results from this study indicate that the adopted reinforcement method make tunnel displacements and member stresses restrain in design criteria.

  • PDF

Applicability Estimation of LID Techniques (LID 요소기술의 적용성 평가)

  • Yeon, Jong Sang;Kim, Eung Seok;Shin, Hyun Suk;Jang, Young su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.444-444
    • /
    • 2015
  • 현제 도시유역의 산업화와 도시화로 인해 유역 내 불투수면적의 증가는 직접 유출량 증가, 지하수자원 고갈, 침투량 감소, 증발산량의 감소 등의 물 순환 체계의 변화를 가져왔다. 이러한 도시 유역 내 물 순환 체계 변화를 개선하기 위해 여러 국가에서 저영향개발(Low Impact Development, LID)의 개발 및 도입이 진행되고 있다. LID는 분산형 빗물관리 시설로써 유역 내 소규모의 LID 요소기술을 대상유역에 적용하여 강우유출수를 저류, 체류, 방지 및 처리하는 시설을 의미한다. LID는 궁극적 목표로 계획단계에서 개발이전의 수문기능을 유지하기 위해 보전, 영향최소화, 유출이동시간 유지, 추가유출량 감소, 오염발지에 초점을 맞추어 계획된다. 현제 LID의 성능 및 적용성에 대한 다양한 연구가 진해되어지고 있으나, LID 요소기술별 시공 비용, 유지관리 비용, 강우유출수 저감효율, 비점오염원 저감효율, 적용위치 등의 다양한 인자를 복합적으로 고려하여 LID요소기술별 적용성 평가를 수행한 연구는 미미한 실정이다. 따라서 본 연구에서는 LID 요소기술 중 나무화분 여과장치, 옥상녹화, 빗무정원, 투수성포장, 침투트렌치, 빗물통, 식생수로 등의 총 7가지 LID 요소기술을 대상으로 연구를 수행하였다. LID 요소기술의 적용성평가를 수행하기 위해 시공비용, 유지관리비용, 강우유출수 저감효율, 비점오염원 저감효율, 적용위치 등의 촐 5가지 평가인자를 Entropy 방법을 이용하여 평가인자별 가중치를 산정하였다. 이후 다기준의사결정 방법 중 PROMETHEE 방법을 이용하여 LID 요소기술의 우선순위를 산정하였다. 현제 PROMETHEE 방법을 이용하여 LID 요소기술별 우선순위를 산정한 결과 옥상녹화가 첫번째 우선순위로 분석되었으며, 침투트렌치, 나무화분여과장치, 투수성포장, 식생수로, 빗물통, 빗물정원 순으로 분석되었다. 따라서 국내에 LID를 적용할 경우 옥상녹화, 침투트렌치, 나무화분 여과 장치 등의 LID 요소기술의 적용성 및 기대효과가 클 것으로 판단된다. 그러나 국내의 모든 지역을 대상으로 적용하기에는 문제가 있으며, 국내 LID 요소기술 적용 시 기초자료로 사용될 수 있을 것으로 판단된다. 대상지역별 신뢰도 높은 LID 요소기술 적용성 평가를 위해서는 대상유역 내 시공된 LID 요소기술을 계측하여 비점오염원 및 우수유출수 저감효율, 시공 비용, 연간 유지관리 비용을 분석하여 평가를 수행되어 한다고 판단된다.

  • PDF

Quantity Management Model for Manufacturing and Assembly of Large-scale Modular Construction Projects during Construction Phase (대규모 모듈러 건축 프로젝트 현장 시공 시 공장 생산량 및 현장 시공량 관리 모델)

  • Choi, Onekyu;Lee, Hyunsoo;Park, Moonseo;Hyun, Hosang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.1
    • /
    • pp.43-53
    • /
    • 2018
  • Modular construction can improve construction quality and accuracy through manufacturing process, and it allow massive production and cost savings by repeatedly producing the same unit. In particular, it is possible to reduce the time because the on-site work and the manufacturing process can be carried out at simultaneously. However, according to the modular construction project survey report, there is no significant difference regarding the average construction period between modular construction and conventional construction. This is due to schedule delay problems that occur during construction phase. Therefore, it is necessary to select alternatives to prevent schedule delay during on-site construction progressing. Especially, in case of large-scale modular construction project, on-site module assembly and manufacturing process are performed concurrently. Hence, identification of alternatives should be done at the co-occurrence by taking both manufacturing and on-site work process in to account. In this research, the management factors of large-scale modular construction project were identified through the IDEF0 modeling, and the quantity management model for manufacturing and assembly is developed. This will reduce the schedule delay problem that occurs in the progression on-site work of a large scale modular construction.