The performance of spatio-temporal moving pattern mining depends on how to analyze and process the huge set of spatio-temporal data due to the nature of it. The several method was presented in order to solve the problems in which existing spatio-temporal moving pattern mining methods[1-10] have, such as increasing execution time and required memory size during the pattern mining, but they did not solve properly yet. Thus, we proposed the STMP/MST method[11] as a preceding research in order to extract effectively sequential and/or periodical frequent occurrence moving patterns from the huge set of spatio-temporal moving data. The proposed method reduces patterns mining execution time, using the moving sequence tree based on hash tree. And also, to minimize the required memory space, it generalizes detailed historical data including spatio-temporal attributes into the real world scopes of space and time by using spatio-temporal concept hierarchy. In this paper, in order to verify the effectiveness of the STMP/MST method, we compared and analyzed performance with existing spatio-temporal moving pattern mining methods based on the quantity of mining data and minimum support factor.
Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.
Recently many LBS(Location Based Service) systems are issued in mobile computing systems. Spatial-Temporal Moving Sequence Pattern Mining is a new mining method that mines user moving patterns from user moving path histories in a sensor network environment. The frequent pattern mining is related to the items which customers buy. But on the other hand, our mining method concerns users' moving sequence paths. In this paper, we consider the sequence of moving paths so we handle the repetition of moving paths. Also, we consider the duration that user spends on the location. We proposed new Apriori_msp based on the Apriori algorithm and evaluated its performance results.
Kim, Tae-Gyu;Baek, Sung-Ha;Chung, Warn-Ill;Bae, Hae-Young
Proceedings of the Korea Information Processing Society Conference
/
2010.11a
/
pp.83-86
/
2010
본 논문에서는 시공간 데이터 스트림에서 관심 이벤트를 검출할 수 있고 복잡한 공간 패턴을 감지할 수 있는 시공간 복합 이벤트 처리 시스템을 제안한다. 제안 시스템은 이동 객체 및 정적 객체에서 발생하는 시공간 데이터 스트림에서 스트림 발생시각, 위치 정보와 같은 시공간 정보를 데이터베이스와의 조인을 통해 얻은 관련 속성 정보를 활용하여 이벤트를 검출할 수 있다. 또한, 시공간 정보가 포함된 복잡한 패턴을 처리하기 위해 공간 패턴 연산자를 사용하여 시공간 복합 이벤트를 처리할 수 있다.
Currently, one of the most critical issues in developing the service support system for various spatio-temporal applications is the discoverying of meaningful knowledge from the large volume of moving object data. This sort of knowledge refers to the spatiotemporal moving pattern. To discovery such knowledge, various relationships between moving objects such as temporal, spatial and spatiotemporal topological relationships needs to be considered in knowledge discovery. In this paper, we proposed an efficient method, MPMine, for discoverying spatiotemporal moving patterns. The method not only has considered both temporal constraint and spatial constrain but also performs the spatial generalization using a spatial topological operation, contain(). Different from the previous temporal pattern methods, the proposed method is able to save the search space by using the location summarization and generalization of the moving object data. Therefore, Efficient discoverying of the useful moving patterns is possible.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.198-198
/
2012
본 연구에서는 서울지방의 최근 10년간 우기시 강우자료를 이용하여 시공간패턴에 따른 강수의 변화를 분석하였다. 이를 위하여 GIS 기법, 강우사상 구분법 및 공간의 상관성 분석 등을 적용하였다. 본 연구의 대상지역인 서울은 북위 $37^{\circ}$34', 동경 $126^{\circ}$59' 부근에 위치하며 남북방향으로 30.3 km, 동서방향으로 36.8km에 걸쳐 있으며 그 면적은 약 $605.41km^2$이다. 또 서울 중앙에서는 한강이 동쪽에서 서쪽으로 흐르며 서울을 강북과 강남으로 양분하고 있으며, 서울을 관통하고 있는 한강으로 수많은 지천이 합류하고 있다. 이러한 지리적 특성들로 인하여 서울 지역의 기후는 매우 복잡한 양상을 나타내고 있다. 과거에는 서울지역에 강우관측소의 수가 매우 적어 이러한 현상을 분석하는데 한계가 있었으나 최근에 자동기상관측소(AWS)들의 확충으로 인하여 자료의 양이 넓어졌다. 본 연구에서는 이러한 자료들을 사용하여 강수의 시공간 패턴을 분석하고자 한다. 이를 위하여 강수의 사상을 구분하기 위한 방법인 IETD법(Inter Event Time Definition)을 적용하였으며, 요인분석 및 군집분석을 이용하여 서울의 강수 지역 구분 및 패턴 분석을 실시하였다. 이러한 분석을 통하여 최종적으로 최근 10년간 서울지방의 강수의 시공간 패턴을 제시하고자 하였다.
Park, Ji-Woong;Kim, Dong-Oh;Hong, Dong-Suk;Han, Ki-Joon
Journal of Korea Spatial Information System Society
/
v.8
no.2
s.17
/
pp.39-52
/
2006
With the recent the use of spatio-temporal data mining which can extract various knowledge such as movement patterns of moving objects in history data of moving object gets increasing. However, the existing movement pattern extraction methods create lots of candidate movement patterns when the minimum support is low. Therefore, in this paper, we suggest the STMPE(Spatio-Temporal Movement Pattern Extraction) algorithm in order to efficiently extract movement patterns of moving objects from the large capacity of spatio-temporal data. The STMPE algorithm generalizes spatio-temporal and minimizes the use of memory. Because it produces and keeps short-term movement patterns, the frequency of database scan can be minimized. The STMPE algorithm shows more excellent performance than other movement pattern extraction algorithms with time information when the minimum support decreases, the number of moving objects increases, and the number of time division increases.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.54-61
/
2009
This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.
Spatio-temporal congestion evolution pattern can be reproduced using the VDS(Vehicle Detection System) historic speed dataset in the TMC(Traffic Management Center)s. Such dataset provides a pool of spatio-temporally experienced traffic conditions. Traffic flow pattern is known as spatio-temporally recurred, and even non-recurrent congestion caused by incidents has patterns according to the incident conditions. These imply that the information should be useful for traffic prediction and traffic management. Traffic flow predictions are generally performed using black-box approaches such as neural network, genetic algorithm, and etc. Black-box approaches are not designed to provide an explanation of their modeling and reasoning process and not to estimate the benefits and the risks of the implementation of such a solution. TMCs are reluctant to employ the black-box approaches even though there are numerous valuable articles. This research proposes a more readily understandable and intuitively appealing data-driven approach and developes an algorithm for identifying congestion patterns for recurrent and non-recurrent congestion management and information provision.
Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
/
2008.06a
/
pp.477-484
/
2008
연쇄 살인과 같은 강력 범죄의 심각성이 사회적 이슈가 되면서 이에 대한 효과적인 과학 수사의 필요성이 증가되고 있다. 특히, 연쇄 범죄 데이타에 대한 공간 분석을 통해 범죄자의 거점 위치를 예측하는 지리적 프로파일링과 미래에 발생될 범행 장소의 위치, 즉 기존 범행에 이어 일어날 다음 범행 위치 예측에 관한 연구가 활발하다. 그러나, 이와 관련된 기존 연구는 물리적인 거리에 대한 통계적 기법을 적용하거나 단순한 공간적 분석만을 적용하므로 낮은 예측 정확도를 보이는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하고 보다 효과적인 연쇄 범죄 수사를 지원하는 방법으로써 연쇄 범죄 발생에 대한 공간적 시간적 분포 특성에 따른 시공간 패턴을 기반으로 다양한 시공간 분석을 적용하는 거점 위치 예측 기법과 다음 범행 위치 예측 기법을 제안한다. 제안 기법은 중심축을 따라 나타나는 선형 분포의 연쇄 범죄에서도 정확도 높은 예측이 가능하고, 다수의 서로 다른 군집들에 대해 각 군집내 범행에 대한 지역적 예측과 대상 영역의 모든 범행에 대한 전역적 예측이 가능하다. 또한 방향 패턴을 활용하여 다음 범행 위치 예측 정확도도 개선하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.