• Title/Summary/Keyword: 시공간 좌표

Search Result 31, Processing Time 0.015 seconds

New Fast Block-Matching Motion Estimation using Temporal and Spatial Correlation of Motion Vectors (움직임 벡터의 시공간 상관성을 이용한 새로운 고속 블럭 정합 움직임 추정 방식)

  • 남재열;서재수;곽진석;이명호;송근원
    • Journal of Broadcast Engineering
    • /
    • v.5 no.2
    • /
    • pp.247-259
    • /
    • 2000
  • This paper introduces a new technique that reduces the search times and Improves the accuracy of motion estimation using high temporal and spatial correlation of motion vector. Instead of using the fixed first search Point of previously proposed search algorithms, the proposed method finds more accurate first search point as to compensating searching area using high temporal and spatial correlation of motion vector. Therefore, the main idea of proposed method is to find first search point to improve the performance of motion estimation and reduce the search times. The proposed method utilizes the direction of the same coordinate block of the previous frame compared with a block of the current frame to use temporal correlation and the direction of the adjacent blocks of the current frame to use spatial correlation. Based on these directions, we compute the first search point. We search the motion vector in the middle of computed first search point with two fixed search patterns. Using that idea, an efficient adaptive predicted direction search algorithm (APDSA) for block matching motion estimation is proposed. In the experimental results show that the PSNR values are improved up to the 3.6dB as depend on the Image sequences and advanced about 1.7dB on an average. The results of the comparison show that the performance of the proposed APDSA algorithm is better than those of other fast search algorithms whether the image sequence contains fast or slow motion, and is similar to the performance of the FS (Full Search) algorithm. Simulation results also show that the performance of the APDSA scheme gives better subjective picture quality than the other fast search algorithms and is closer to that of the FS algorithm.

  • PDF