• Title/Summary/Keyword: 시공간적 상세화

Search Result 36, Processing Time 0.038 seconds

A Statistical Downscaling of Climate Change Scenarios Using Deep Convolutional Neural Networks (합성곱 신경망(CNN)기반 한반도 지역 대상 기후 변화 시나리오의 통계학적 상세화 기법 개발)

  • Kim, Yun-Sung;Uranchimeg, Sumiya;Yu, Jae-Ung;Cho, Hemie;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.326-326
    • /
    • 2022
  • 기후 변화 시나리오는 온실가스, 에어로졸, 토지이용 변화 등 인위적인 원인으로 발생한 복사강제력 변화를 지구시스템 모델에 적용하여 산출한 미래 기후 전망정보(기온, 강수량, 바람, 습도 등)를 생산하는데 활용된다. 또한, 미래에 기후변화로 인한 영향을 평가하고 피해를 최소화하는데 활용할 수 있는 선제적인 정보로 활용된다. GCM과 RCM은 구조 및 모수화 과정, 불확실성 등의 한계로 인하여 상대적으로 큰 시공간적 규모를 가지며, 실제 관측된 기상인자들을 재현하는데 시공간적 차이 즉 편의(bias)가 발생하며. 실제 관측된 기상인자의 시간적 변화 특성을 재현하지 못하는 문제점을 내재하고 있는 것으로 보고되고 있다. 이러한 점에서 기후모델에서 생산된 정보를 수문학적으로 적용하기 위해서는 시공간적 상세화와 편의 보정은 필수적이다. 본 연구에서는 관측자료를 사용하여 재해석 자료를 편의보정 한 뒤. 기후 변화 시나리오를 합성곱 신경망(CNN)을 기반으로 상세화 과정을 진행하여 고해상도 자료를 생산하였으며, CNN 기반 상세화 기법 적용성은 지상 관측자료 대상으로 평가하였다.

  • PDF

Joint Probability Approach to Bias Correction on Rainfall Forecasting Using Climate State Variables (결합확률모델 및 기상변량을 이용한 예측강수의 편의보정 기법)

  • Jung, Min-Kyu;Kim, Tae-Jeong;Hwang, Kyu-Nam;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.309-309
    • /
    • 2019
  • 기후예측모델을 통해 일단위 강수의 예측정보가 제공되고 있지만, 실제 강수량자료와 시공간적 편의로 인해 수문학적 활용은 한계가 있다. 일반적으로 기후모델의 시공간적 해석 규모 및 예측정확성을 고려할 때 계절단위에서 예측정보의 활용이 가장 현실적인 것으로 알려지고 있다. 그러나 수문해석 시 시공간적 해상도가 낮아 직접적인 활용은 어려운 상황이며, 수문해석 모형의 입력자료로 활용 시 편의보정 및 상세화 과정이 일반적으로 요구된다. 본 연구에서는 기후모델로부터 얻은 강우예측결과에 Bayesian 모델 기반의 편의보정-상세화 기법을 개발하여 강우예측정보의 활용성을 개선하고자 한다. 이 과정에서 Bayesian Copula 모델을 이용한 이변량 형태의 예측강수의 검보정 방법을 개발하였으며, 특히 기후모델 이외의 기상 상태변량인 해수면온도(sea surface temperature, SST)를 예측인자로 추가하여 Hybrid 형태의 계절 앙상블 강우예측모델을 개발하고자 한다.

  • PDF

Changes projection in the Future Extreme Precipitation over South Korea using the HadGEM3-RA (HadGEM3-RA를 이용한 한반도 미래 극한강수 변화 전망)

  • Sung, Jang-Hyun;Kang, Hyun-Suk;Park, Su-Hee;Cho, Chun-Ho;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.343-343
    • /
    • 2012
  • 미래 극한사상의 초과확률을 산정하기 위하여 저해상도의 전지구 기후변화 시나리오 자료를 그대로 사용하거나 이를 역학적 또는 통계적 방법으로 상세화한 고해상도 기후변화 시나리오 자료를 활용한다. 통계적 상세화는 전지구 또는 지역기후모델의 현재기후 모의 자료와 관측 자료와의 통계적 관계를 미래 예측자료에 적용하는 방법으로, 현재와 미래 기후의 시공간적 분포가 동일하다는 가정을 포함하고 있다. 반면 역학적 상세화 방법은 기후변화 강제력을 고려하는 지역기후모델을 이용하여 기후시스템의 역학 및 물리과정, 기후시스템간 의 상호작용, 기후변화의 비정상성 등을 고려할 수 있고, 변수간의 시공간적 상관성을 지구시스템의 물리 역학적 과정으로 해석할 수 있다는 장점이 있다. 이에 국립기상연구소에서는 영국 기상청의 통합모델(UM)기반의 지역기후모델(HadGEM3)을 사용하여 50 km 및 12.5 km 격자 단위로 역학적 상세화(dynamic downscaling)를 수행하였다. 본 연구에서는 역학적 상세화로 생산된 HadGEM3-RA 자료를 이용하여 현재기후(1980-2005), 가까운 미래(2020-2049)와 21세기말(2070-2099)의 20년 빈도 강수량을 비교하였다. 연구결과, 남한에 걸쳐 현재기후에 비하여 미래에는 극한강수의 크기와 빈도가 전반적으로 증가하는 경향을 확인할 수 있었다. 20년에 한번씩 발생하였던 일 극한강수는 RCP8.5를 고려한 21세기말에는 약 4년에 한번씩 발생하리라 전망되었다.

  • PDF

Development of Hourly Rainfall Simulation Technique Using RCP Scenario (RCP 시나리오를 활용한 시간강우량 자료 생성기법 개발)

  • Kim, Jin Young;Kim, Jang-Gyeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.6-6
    • /
    • 2015
  • 본 연구에서는 일단위로 제공되는 RCP 시나리오를 Poisson Cluster 기법을 활용하여 시간강우량으로 생성할 수 있는 모형을 개발하는데 목적이 있다. 일반적으로 시간단위 강우량의 경우 수자원 설계 또는 강우-유출 분석시 가장 기본이 되는 입력 자료로서 이에 대한 모의기법 확립이 기후변화에 따른 수문학적 영향 검토의 신뢰성을 결정짓는 핵심 요소이다. 그러나 국내 다수 연구를 살펴보면 기후변화 시나리오의 시 공간적 상세화 기법을 활용한 일단위 상세화 연구는 다수 존재하였지만, 일단이 이하의 시간적 규모에 대한 연구는 미진한 실정이다. 이러한 이유로 본 연구에서는 시단위 상세화 기법시 일반적으로 사용되고 있는 Poisson Cluster 기법을 활용하여 국내 실정에 맞는 시단위 상세화 기법을 개발고자 한다. 본 연구에서는 RCP 시나리오를 시단위강우량 자료로 생성하기 위해 다음과 같은 연구를 진행하였다. 첫째, 본 연구에서는 기상청에서 제공하는 RCP($27km{\times}27km$) 시나리오를 활용하였으며, 1km 격자 단위로 시공간적 상세화 기법을 수행하였다. 둘째, 시공간적으로 상세화 된 자료를 Poisson Cluster 기법을 기반으로 시간단위 자료를 생성하였으며, 기본적인 통계치(평균, 분산, 왜곡도 등)를 활용하여 관측값과 비교 분석 하였다. 마지막으로, 미래 기후변화 시나리오를 동일한 방법으로 시간단위 자료를 생성하고 연 최대값을 추출하여 빈도해석을 통해 미래 극치 확률강우량을 평가하였다. 본 연구 결과 시간단위 자료를 제공함으로써 미래 수자원 설계 및 영향평가를 효과적으로 수행할 것으로 기대되며, 수문기상변화 예측을 위한 신뢰성 있는 자료로 활용될 수 있을 것으로 판단된다.

  • PDF

A development of grid-based spatial downscaling for climate change assessment in regions with sparse ground data networks (미계측 지역 기후변화 평가를 위한 격자 기반 통계적 상세화 기법 개발)

  • Kim, Yong-Tak;Jung, Min-Kyu;Kim, Min-Ji;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.41-41
    • /
    • 2021
  • 최근 전 세계적으로 급증하는 기후변화의 영향으로 이상기후로 인한 자연재해들의 강도 및 발생 빈도의 증가가 다양한 연구를 통하여 확인되고 있으며, 이를 대비 및 대응하기 위한 방안수립 연구가 세계의 가장 중요한 주제로 부상되고 있다. 우리나라의 경우에는 기후변화에 따른 심각성 문제가 대두되고 있지만 국가적 대응기반조성 및 수자원정책 의사결정에 직접적으로 활용될 수 있는 일관성 있고 통합적인 기후 정보가 부족한 실정이다. 미래 기상 변동성을 나타내는 기후모델은 전 지구적 대규모 기상장(large scale climate pattern)을 비교적 정확하게 묘사하는 것으로 알려져 있으나 모형에 내재해 있는 시·공간적 편의(spatial-temporal bias) 및 불확실성으로 인하여 통계학적 상세화가 필수적으로 요구된다. 이러한 편향성은 일반적으로 지상 관측 자료를 격자에 보간하여 보정하는 방법이 적용되고 있지만, 관측자료의 불연속성 및 관측소의 불균등성으로 인하여 공간적 신뢰성이 낮다. 이에, 본 연구에서는 Bayesian 기반의 Kriging을 통한 공간적 편의보정 및 QDM(quantile delta mapping)을 연계한 새로운 격자 기반의 통계적 상세화 모형 Bayesian Kriging-QDM을 개발하였다. 본 연구를 통하여 산정된 결과는 과거자료에 근거하여 이루어지는 기존의 보수적인 수자원 관리 체계의 위험성을 저감 시킬 수 있는 의사결정에 직접적으로 활용될 수 있는 기초 자료로 이용 가능할 것으로 판단된다.

  • PDF

A Study on the Analysis of Long-term Climate Change using Spatio-temporal Rainfall Data in Extremely High Resolution (시공간적 초상세 강우자료를 이용한 장기 기후변화 분석연구)

  • Kim, Min Seok;Kang, Ho Yeong;Lee, Jung Hwan;Moon, Young Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.455-455
    • /
    • 2017
  • 최근 기후변화로 인한 도시홍수 피해가 증가하고 있다. 이에 따라 본 연구에서는 기상청에서 제공하는 HadGEM3-RA의 한반도(12.5km) 기후변화 RCP 4.5 및 RCP 8.5시나리오에 대해 편의보정 및 시간상세화를 실시하여 기후변화를 고려한 수문분석을 하였다. 기후변화 시나리오의 편의보정은 Gamma분포를 이용한 모수적 분위사상법과 관측자료의 누가확률분포를 이용하는 비모수적 분위사상법으로 수행하였으며, 관측된 분 단위 강우자료를 기반으로 기후변화 시나리오 미래기간에 대해 시간상세화를 실시하였다. 또한, 도림천유역을 중심으로 기후변화 시나리오 미래기간의 확률강우량과 설계홍수량을 산정하였다. 본 연구에 결과는 수문분석을 위한 기후변화 시나리오 시간상세화 방안에 크게 기여 할 것으로 판단된다.

  • PDF

Spatial Downscaling of Satellite-based Soil Moisture Using Support Vector Machine in Northeast Asia (기계학습을 활용한 동북아시아 지역 위성 토양수분 데이터 상세화 연구: AMSR2, ASCAT 데이터를 활용하여)

  • Choi, Min Ha;Kim, Seongkyun;Kim, Hyung Lok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.208-208
    • /
    • 2016
  • 수문순환과정의 시공간적 거동을 해석하고 이를 정량화 하는 것은 효율적인 수자원 관리 및 계획을 위해 반드시 선행되어야 하는 연구이다. 특히 토양수분은 물 에너지 순환에서 지표면과 대기 사이의 복잡한 관계를 이해하기 위한 중요한 수문인자로, 이를 정확하게 측정하기 위한 방법들이 다각도로 발전되어 왔다. 그 중 위성 데이터를 활용한 토양수분 산정은 미계측 지역의 토양수분을 지속적이고 광역적이게 관측할 수 있는 선진 기술로 각광받고 있다. 그러나 대부분의 위성 자료들이 가지고 있는 공간 해상도는 복잡한 지형 환경을 대상으로 한 지역의 원격 탐사로서는 국지적인 수문학적 현상들을 분석하는데 어려움을 가지고 있다. 특히 우리나라의 경우 국토의 70% 정도가 산지로 이루어져 있으며 경사도가 $5^{\circ}$ 이하의 평탄한 지역은 약 23%에 그치는 등 복잡한 식생 지형 환경을 가지고 있다. 따라서 인공위성의 해상도와 식생 투과도를 고려할 때 저 해상도의 위성 토양수분만으로는 우리나라와 같이 면적에 비해 복잡한 환경에 기반 한 수문학적 현상들을 충분히 분석하는데 한계점이 있다. 따라서 본 연구에서는 support vector machine (SVM) 기계학습을 활용하여 ASCAT과 AMSR2 위성 토양수분의 상세화를 수행하여 고해상도의 토양수분을 산정하였고, 이를 지점관측 자료와 비교해 상세화도 자료의 신뢰성을 평가하였다. 검증된 고해상도 토양수분 데이터는 향후 자연재해 분석에 있어 예측의 정확성을 높이고 수문순환 및 기후 모델링에 있어서 중요한 입력 인자로 활용될 것으로 기대된다.

  • PDF

Study for searching optimal parameters for analog based downscaling method (아날로그 공간상세화 기법의 적정 매개변수 탐색 연구)

  • Kim, Seon-Ho;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.66-66
    • /
    • 2022
  • 아날로그 기법은 대표적인 공간상세화 기법 중 하나로써, 과거 기상 현상이 미래 재현된다는 가정 하에 목표 시점과 가장 유사한 기상패턴을 보이는 과거 시점을 활용하여 공간상세화를 수행하는 방법이다. 상세화 목표 시점과 가장 유사한 과거 시점을 찾기 위해서는 선결되어야 하는 매개변수가 존재한다. 특히 상세화 성능에 민감한 것으로 알려진 매개변수로는 목표 시점과 유사한 과거 시점 탐색에 활용되는 시공간 범위, 상세화 변수와 역학적 관계를 가지고 있는 종관기상변수, 상세화에 활용되는 과거 시점의 개수 등이 있다. 아날로그 기법의 매개변수를 탐색하고자 하는 시도는 국외에서 여러 차례 진행되어 왔으나, 각 매개변수는 지역의 기상특징에 따라 상이한 결과를 나타내었다. 국내에서는 국외에서 수행한 탐색 결과를 활용하여 공간상세화를 주로 수행하여 왔지만, 보다 높은 성능의 상세화를 수행하기 위해서는 국내 지역에 맞는 매개변수를 활용하는 것이 타당하다. 본 연구에서는 국내 지역에 적합한 아날로그 공간상세화 매개변수를 탐색하고 이를 제시하고자 한다. 탐색된 매개변수는 아날로그 공간상세화 기법뿐만 아니라 다양한 공간상세화 기법에 활용하능한 정보이기 때문에, 연구결과의 활용성이 높을 것으로 판단된다.

  • PDF

Development of daily spatio-temporal downscaling model with conditional Copula based bias-correction of GloSea5 monthly ensemble forecasts (조건부 Copula 함수 기반의 월단위 GloSea5 앙상블 예측정보 편의보정 기법과 연계한 일단위 시공간적 상세화 모델 개발)

  • Kim, Yong-Tak;Kim, Min Ji;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1317-1328
    • /
    • 2021
  • This study aims to provide a predictive model based on climate models for simulating continuous daily rainfall sequences by combining bias-correction and spatio-temporal downscaling approaches. For these purposes, this study proposes a combined modeling system by applying conditional Copula and Multisite Non-stationary Hidden Markov Model (MNHMM). The GloSea5 system releases the monthly rainfall prediction on the same day every week, however, there are noticeable differences in the updated prediction. It was confirmed that the monthly rainfall forecasts are effectively updated with the use of the Copula-based bias-correction approach. More specifically, the proposed bias-correction approach was validated for the period from 1991 to 2010 under the LOOCV scheme. Several rainfall statistics, such as rainfall amounts, consecutive rainfall frequency, consecutive zero rainfall frequency, and wet days, are well reproduced, which is expected to be highly effective as input data of the hydrological model. The difference in spatial coherence between the observed and simulated rainfall sequences over the entire weather stations was estimated in the range of -0.02~0.10, and the interdependence between rainfall stations in the watershed was effectively reproduced. Therefore, it is expected that the hydrological response of the watershed will be more realistically simulated when used as input data for the hydrological model.

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.