• Title/Summary/Keyword: 시계열 회귀모형

Search Result 239, Processing Time 0.025 seconds

Simulation of synthetic snow depth time-series using stochastic weather generation model (추계 일기 생성 모형을 활용한 합성 적설심 시계열 모의)

  • Park, Jeongha;Kim, Dongkyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.99-99
    • /
    • 2021
  • 본 연구에서는 기상 자료와 적설 특성 자료의 관계를 도출하고, 이와 추계 일기 생성 모형을 활용하여 합성 적설심 시계열을 모의하는 방법에 대하여 제안한다. 추계 일기 생성 모형에서는 적설량을 직접 모의하지 않기 때문에 강수량을 적설량으로 변환해야한다. 이를 위해 도입한 관계식은 다음과 같다. 첫째로 기상청 적설 예보의 적설 유무 판단 기준을 이용하였다. 이 기준에서는 상대습도와 지상기온에 따라 강수의 형태를 비, 눈, 진눈깨비로 구분한다. 둘째로 강수가 적설로 판단되었을 때 강수량을 신적설심으로 환산하는 수상당량비를 지상기온과 회귀 분석하였다. 선행 연구에 따라 3시간 1 mm 이상 5 mm 이하 강수와 3시간 5 mm 이상 강수 사상에 대하여 나누어 sigmoid형 곡선을 이용하여 회귀 분석하였다. 마지막으로 융설에 의한 적설심 감소량을 지상기온과 복사량의 함수로 표현하였으며, 각 변수의 계수는 입자 군집 최적화 방법을 통하여 보정하였다. 추계 일기 생성 모형으로는 AWE-GEN 모형을 활용하였으며, 시험 자료로 강릉(105) 종관기상관측소의 24년 기간(1982-2005) 자료를 활용하여 합성 적설심 시계열을 생성하였다. 합성 적설심 시계열 모의 과정은 다음과 같다. (1) 추계 일기 생성 모형으로 합성 일기 자료 생성, (2) 강수 발생 시 적설 유무 판단, (3) 적설로 판단 시 수상당량비를 계산하여 신적설심 추정, (4) 기존 적설심에 신적설심을 더하고, 적설심 감소량만큼 감소. 위와 같은 과정으로 200년 길이 합성 적설심 시계열을 모의한 결과 극한 사상을 과소 추정하는 경향이 나타나 추가적인 개선이 필요한 것으로 판단된다.

  • PDF

A Comparison of Autoregressive Integrated Moving Average and Artificial Neural Network for Time Series Prediction (자기회귀누적이동평균모형과 신경망모형을 이용한 시계열예측의 비교)

  • Yoon, YeoChang
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.1516-1519
    • /
    • 2011
  • 예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.

Analyzing financial time series data using the GARCH model (일반 자기회귀 이분산 모형을 이용한 시계열 자료 분석)

  • Kim, Sahm;Kim, Jin-A
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.475-483
    • /
    • 2009
  • In this paper we introduced a class of nonlinear time series models to analyse KOSPI data. We introduce the Generalized Power-Transformation TGARCH (GPT-TGARCH) model and the model includes Zakoian (1993) and Li and Li (1996) models as the special cases. We showed the effectiveness and efficiency of the new model based on KOSPI data.

  • PDF

Comparison of time series predictions for maximum electric power demand (최대 전력수요 예측을 위한 시계열모형 비교)

  • Kwon, Sukhui;Kim, Jaehoon;Sohn, SeokMan;Lee, SungDuck
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.623-632
    • /
    • 2021
  • Through this study, we studied how to consider environment variables (such as temperatures, weekend, holiday) closely related to electricity demand, and how to consider the characteristics of Korea electricity demand. In order to conduct this study, Smoothing method, Seasonal ARIMA model and regression model with AR-GARCH errors are compared with mean absolute error criteria. The performance comparison results of the model showed that the predictive method using AR-GARCH error regression model with environment variables had the best predictive power.

Test for Distribution Change of Dependent Errors (종속 오차에 대한 분포 변화 검정법)

  • Na, Seong-Ryong
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.4
    • /
    • pp.587-594
    • /
    • 2009
  • In this paper the change point problem of the error terms in linear regression models is considered. Since fixed or stochastic independent variables and weakly dependent errors are assumed, usual multiple regression models and time series models including ARMA are covered. We use the estimates of probability density function based on residuals in order to test the distribution change of the unobserved errors. Under some mild conditions, the test using the residuals is proved to have the same limiting distribution as the test based on true errors.

Estimating Automobile Insurance Premiums Based on Time Series Regression (시계열 회귀모형에 근거한 자동차 보험료 추정)

  • Kim, Yeong-Hwa;Park, Wonseo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.2
    • /
    • pp.237-252
    • /
    • 2013
  • An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

A study on parsimonious periodic autoregressive model (모수 절약 주기적 자기회귀 모형에 관한 연구)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.133-144
    • /
    • 2016
  • This paper proposes a parsimonious periodic autoregressive (PAR) model. The proposed model performance is evaluated through an analysis of Korean unemployment rate series that is compared with existing models. We exploit some common features among each seasonality and confirm it by LR test for the parsimonious PAR model in order to impose a parsimonious structure on the PAR model. We observe that the PAR model tends to be superior to existing seasonal time series models in mid- and long-term forecasts. The proposed parsimonious model significantly improves forecasting performance.

Exploratory data analysis for Korean daily exchange rate data with recurrence plots (재현그림을 통한 우리나라 환율 자료에 대한 탐색적 자료분석)

  • Jang, Dae-Heung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1103-1112
    • /
    • 2013
  • Exploratory data analysis focuses mostly on data exploration instead of model fitting. We can use the recurrence plot as a graphical exploratory data analysis tool. With the recurrence plot, we can obtain the structural pattern of the time series and recognize the structural change points in time series at a glance.

Test of Homogeneity for Intermittent Panel AR(1) Processes and Application (간헐적인 패널 1차 자기회귀과정들의 동질성 검정과 적용)

  • Lee, Sung Duck;Kim, Sun Woo;Jo, Na Rae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1163-1170
    • /
    • 2014
  • The concepts and structure of intermittent panel time series data are introduced. We suggest a Wald test statistic for the test of homogeneity for intermittent panel first order autoregressive model and its limit distribution is derived. We consider the fitting the model with pooling data using sample mean at the time point if homogeneity for intermittent panel AR(1) is satisfied. We performed simulations to examine the limit distribution of the homogeneity test statistic for intermittent panel AR(1). In application, we fit the intermittent panel AR(1) for panel Mumps data and investigate the test of homogeneity.