• Title/Summary/Keyword: 시계열 평가

Search Result 630, Processing Time 0.039 seconds

Displacement monitoring of water resource facilities using time-series SAR interferometry (시계열 영상레이더 간섭기법을 이용한 수자원시설물 변위 모니터링)

  • Taewook Kim;Siung Lee;Seohyeon Kim;Hyangsun Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.3-3
    • /
    • 2023
  • 수자원위성은 C-band 영상레이더(synthetic aperture radar, SAR)를 탑재한 중형급의 수자원 관리 및 수재해 감시 전용 위성이다. 수자원위성은 물 환경과 관련된 다양한 분야에 활용되어 고부가가치의 정보를 제공할 것으로 예상되는데, 특히 시계열 레이더 간섭기법(SAR interferometry, InSAR)의 적용을 통해 댐·보와 같은 수자원시설물의 미세변위 탐지 및 안정성 평가에 효과적으로 사용될 것으로 기대된다. 시계열 영상레이더 간섭기법은 고정산란체를 이용하는 Persistent Scatterer InSAR(PSInSAR) 기법과 분산산란체 기반의 Small BAseline Subset(SBAS) InSAR 기법으로 대표된다. 이 연구에서는 수자원위성에 적합한 수리시설물 시계열 변위 모니터링 알고리즘 개발을 목적으로, Sentinel-1 위성의 C-band SAR 기반 시계열 레이더 간섭기법의 적용성을 평가하고 알고리즘 개발에 고려해야 할 사항들을 분석하였다. 2020년 여름 수재해가 발생한 섬진강댐과 담양댐 및 수변부를 테스트 사이트로 선정하고, 2019년부터 2021년까지의 Sentinel-1 시계열 SAR 영상에 PSInSAR와 SBAS InSAR를 적용하여 시계열 변위를 관측하였다. 댐체에서는 PSInSAR가 SBAS InSAR에 비해 신뢰할 수 있는 시계열 변위를 산출하였다. 그러나 시계열 분석 기간이 길어짐에 따라 PSInSAR 시계열 변위의 정밀도가 낮아지는 경향이 관측되었다. 수변부에서 PSInSAR는 변위 정보를 거의 제공하지 못했다. SBAS InSAR는 수변부의 시계열 변위 모니터링에 효과적이었으나, 여름철 장마 등으로 인해 레이더 간섭도의 긴밀도(coherence)가 낮아질 경우 부정확한 변위를 산출하였다. 앞으로 국내의 다양한 수자원시설물을 대상으로 Sentinel-1 위성을 이용한 시계열 변위 모니터링 알고리즘의 적용성 평가 연구가 진행될 예정이며, 연구 결과를 수자원위성의 관측 특성에 적합한 변위 탐지 알고리즘의 개발에 활용하고자 한다.

  • PDF

웨이브릿 시계열 신경망을 이용한 플라즈마 장비 센서 정보 모델링

  • Kim, Yu-Seok;Kim, Byeong-Hwan;Han, Jeong-Hun;Seo, Seung-Hun;Son, Jong-Won
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.72-76
    • /
    • 2006
  • 본 연구에서는 웨이브릿과 신경망을 결합하여 플라즈마 고장을 감시하기 위한 시계열 모델을 개발하였다. 본 기법은 플라즈마 증착장비에 의해 수집된 18 개의 센서정보에 적용하여 평가하였다. 이산치 웨이브릿(Discrete Wavelet Transformation)은 장비에서 수집된 센서정보의 전 처리를 위해 이용되었다. 시계열 모델의 성능은 과거와 미래정보의 함수로 평가하였다. 수집된 18 개의 센서정보에 대한 모델성능 비교를 위해 표준화된 성능평가지표가 적용되었다. 평가결과, 본 기법에 의해 개발된 시계열 모델은 대략 4% 정도의 예측에러를 보였다.

  • PDF

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Boryeong Dam Inflow Time Series Generation that Reflects Multi-year Drought (다년 가뭄현상을 반영한 보령댐 유입량 시계열 생성에 관한 연구)

  • Kim, Gi Joo;Yoon, Hae Na;Seo, Seung Beom;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.20-20
    • /
    • 2018
  • 다년동안 지속되는 가뭄현상이 빈번하게 발생하고 있지만, 우리나라에서는 지금까지 장기 가뭄보다 단기 가뭄에 초점을 맞춰 연구가 진행되어 왔다. 다년 가뭄을 반영하지 않고 댐의 저수용량을 평가할 경우, 저수용량이 과소평가될 수 있기 때문에 다년간의 가뭄을 반영한 시계열 모형을 통해 다양한 시나리오를 생성하고 분석해야 한다. 본 연구에서는 2015년부터 2017년까지 장기 가뭄이 발생한 보령댐의 1998년-2017년까지의 관측 월평균 유입량 자료를 바탕으로 Autoregressive Moving Average(ARMA)시계열 모형과 Hurst Coefficient를 추가하여 장기지속성을 반영하도록 개발된 시계열 모형인 Autoregressive Fractionally Integreated Moving Average(ARFIMA)를 사용하여 보령댐 500년 기간의 유입량 자료를 생성하였다. Hurst Coefficient는 Hurst가 제안한 Rescaled Range(R/S)방법 외에도 경험식, 이론식을 모두 사용하여 산정하였다. 생성된 자료가 관측 자료의 장기지속성을 잘 반영하는지에 대한 검증을 위해 관측자료의 누적유입량으로부터 선형 이동평균방법을 사용하여 가뭄기준을 산정하고, 생성한 유입량 자료가 장기가뭄을 반영하고 있는지 판단하였다. 그 결과 가뭄의 장기지속성을 잘 반영하는 시계열 모형을 선정하였으며, 향후 연구를 통해 미래 기후변화 시나리오를 반영한 장기가뭄 분석을 수행할 예정이다.

  • PDF

Time Series Models for Performance Evaluation of Network Traffic Forecasting (시계열 모형을 이용한 통신망 트래픽 예측 기법연구)

  • Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.219-227
    • /
    • 2007
  • The time series models have been used to analyze and predict the network traffic. In this paper, we compare the performance of the time series models for prediction of network traffic. The feasibility study showed that a class of nonlinear time series models can be outperformed than the linear time series models to predict the network traffic.

Research on Normalizing Flow-Based Time Series Anomaly Detection System (정규화 흐름 기반 시계열 이상 탐지 시스템 연구)

  • Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.283-285
    • /
    • 2023
  • 이상 탐지는 데이터에서 일반적인 범주에서 크게 벗어나는 인스턴스 또는 패턴을 식별하는 중요한 작업이다. 본 연구에서는 시계열 데이터의 특징 추출을 위한 비지도 학습 기반 방법과 정규화 흐름의 결합을 통한 이상 탐지 프레임워크를 제안한다. 특징 추출기는 1차원 합성곱 신경망 기반의 오토인코더로 구성되며, 정상적인 시퀀스로만 구성된 훈련 데이터를 압축하고 복원하는 과정을 통해 최적화된다. 추출된 시계열 데이터의 특징 맵은 가능도를 최대화하도록 훈련된 정규화 흐름의 입력으로 사용된다. 이와 같은 방식으로 훈련된 이상 탐지 시스템은 테스트 샘플에 대한 이상치를 계산하며, 최종적으로 임계값과의 비교를 통해 이상 여부를 예측한다. 성능 평가를 위해 시계열 이상 탐지를 위한 공개 데이터셋을 이용하여 공정하게 이상 탐지 성능을 비교하였으며, 실험 결과는 제안하는 정규화 흐름 기법이 시계열 이상 탐지 시스템에 활용될수 있는 잠재성을 시사한다.

  • PDF

Assessment for Detecting Trend using Empirical Mode Decomposition Method (경험적 모드분해법을 활용한 경향성 분석의 적용성 평가)

  • Kim, Taereem;Choi, Wonyoung;Seo, Jungho;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.232-232
    • /
    • 2016
  • 주어진 시계열 자료의 경향성을 분석하고 판별하는 것은 수문 자료의 분석에서 가장 우선적으로 수행되어야 할 절차이며 경향성의 유무에 따라 자료를 분석하는 방법이 달라지게 되므로 매우 중요한 부분이다. 일반적으로 국내에서 주로 사용되는 수문 시계열 자료의 경향성 분석 방법으로는 비매개변수적인 방법인 Mann-Kendall test, Spearman's rho test, Hotelling Pabst test, Sentest 등이 있으며 그 중에서도 국내외 수문 자료의 경향성 분석에는 비교적 높은 기각력을 보이는 Mann-Kendall test가 주된 방법으로 활용되어 오고 있다. Mann-Kendall test는 통계적 유의성을 바탕으로 한 경향성 판별 방법으로 시계열 자료 내에 존재하는 경향성의 형태를 분석하여 경향성 유무를 판별하는 것에는 한계가 있다. 경험적 모드분해법을 활용한 경향성 분석 방법은 체거름 과정을 통하여 주어진 시계열 자료를 내재모드함수로 분해한 후, 추출된 모든 요소를 제거하고 남은 잔여값의 형태를 이용하여 경향성 유무를 판별하는 방법으로 자료에 내재된 경향성의 형태를 확인할 수 있는 장점을 가지고 있다. 본 연구에서는 이러한 경험적 모드분해법을 이용한 경향성 분석 방법을 소개하고, 모의를 통한 시계열 자료를 이용하여 경향성 분석에 적용한 후 기존에 사용되어온 Mann-Kendall test와의 비교를 통해 적용성을 평가하였다.

  • PDF

Neural network AR model with ETS inputs (지수평활법을 외생변수로 사용하는 자기회귀 신경망 모형)

  • Minjae Kim;Byeongchan Seong
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.3
    • /
    • pp.297-309
    • /
    • 2024
  • This paper evaluates the performance of the neural network autoregressive model combined with an exponential smoothing model, called the NNARX+ETS model. The combined model utilizes the components of ETS as exogenous variables for NNARX, to forecast time series data using artificial neural networks. The main idea is to enhance the performance of NNAR using only lags of the original time series data, by combining traditional time series analysis methods with the neural networks through NNARX. We employ two real data for performance evaluation and compare the NNARX+ETS with NNAR and traditional time series analysis methods such as ETS and ARIMA (autoregressive integrated moving average) models.

Time-Series Neural Network Modeling of Pulsed Ion Energy Pattern and Applications to Plasma Monitoring (펄스드 이온에너지 패턴의 신경망 시계열 모델링과 플라즈마 감시에의 응용)

  • Kim, Su-Yeon;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1855-1856
    • /
    • 2008
  • 본 연구에서는 공정 중에 민감하게 반응하는 플라즈마로부터 수집되는 이온에너지 분포(IED : Ion Energy Distribution)와 시계열 신경망 모델링을 결합한 플라즈마 감시 기술을 개발하였다. NIEA(Non-invasive ion analyzer)를 이용하여 IED를 측정하였으며, 모델링에 사용된 신경망은 자기 상관 시계열 신경망(A-NTS : Auto-Correlated Neural Time-Series)이다. 모델 개발을 위한 학습과 테스트 데이터로는 Duty ratio 100%에서 수집한 IED를 이용하였으며, 개발된 모델의 감시 성능은 60%에서 수집된 IED로 평가하였다. 학습인자 k와 m의 범위는 각각 1-3 으로 총 9종류의 (k, m) 조합에 대해서 모델 성능을 평가하였다. 신경망 은닉층 뉴런수는 2-9의 범위에서 최적화하였다. 최적화된 모델은 (2, 3)과 뉴런수 2에서 구해졌으며, 0.335의 예측 에러를 보였다. 60% IED 데이터로 평가한 결과 플라즈마 고장에의 민감도는 62% 이상이었다. 이는 IED의 A-NTS 모델이 플라즈마 고장의 감시에 효과적으로 적용될 수 있음을 의미한다.

  • PDF

A systematic review of studies using time series analysis of health and welfare in Korea (체계적 문헌고찰을 통한 국내 보건복지 분야의 시계열 분석 연구 동향)

  • Woo, Kyung-Sook;Shin, Young-Jeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.579-599
    • /
    • 2014
  • The purpose of this study was to identify the trends and risk of bias of research using time series analysis on health and welfare in Korea and to suggest a direction for future health and welfare research. The database searches identified 6,543 papers. Following the process for screening and selecting, a total of 91 papers were included in the systematic review. There has been a steady increase in the number of articles using time series analysis from 1987 to 2013. Time series analysis was applied in medicine and health science journals. The main goals were explanation and description. Most of the subjects were heath status and utilization of healthcare services. The main model used in the time series analysis was ARIMA followed by time series regression. The data were gathered from various sources, including the national statistical office and government agencies. For assessing risk of bias, some studies were found to have inadequate sample sizes or showed no time series graphs and plots. These findings suggest greater widespread utilization of time series analysis in the field of health and welfare and to use the appropriate analysis methods and statistical procedures to obtain more reliable results to improve the quality of research.