Journal of the Korean Data and Information Science Society
/
v.27
no.2
/
pp.327-335
/
2016
The People's Republic of China has vigorously been pursuing the internationalization of the Chinese Yuan or Renminbi after the financial crisis of 2008. In this view, an abrupt increase of use of the Chinese Yuan in the onshore and offshore markets are important milestones to be one of important currencies. One of the most frequently used methods to forecast volatility is GARCH model. Since a prediction error of the GARCH model has been reported quite high, a lot of efforts have been made to improve forecasting capability of the GARCH model. In this paper, we have proposed MLP-GARCH and a DL-GARCH by employing Artificial Neural Network to the GARCH. In an application to forecasting Chinese Yuan volatility, we have successfully shown their overall outperformance in forecasting over the GARCH.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.3
/
pp.1-18
/
2018
The purpose of this study is to analyze sensitivity of forest ecosystem to climate change using spatial analysis methods focused on 6 national parks. To analyze, we constructed MODIS NDVI and temperature of Korea Meteorologic Administration based on 1km spatial resolution and 16 days. And we conducted time-series and correlation analysis using MODIS NDVI and temperature. A most sensitive region to climate change is Jirisa National Park(r=0.434) and Seoraksan National Park(r=0.415), there is the highest mean correlation coefficient. The sensitivity of forest ecosystem varied according to habitat characteristics and forest types in national park. In Abies koreana of Hallsan Nation Park, temperature has raised, but NDVI has decreased. these results will be based data of climate change adaption policy for protecting forest ecosystem.
Proceedings of the Korea Water Resources Association Conference
/
2023.05a
/
pp.199-199
/
2023
최근 기후변화의 영향으로 가뭄, 홍수 등 재해의 발생 빈도 및 강도가 증가하고 있다. 미래에는 온실가스 배출량의 증가로 극한 기상현상은 더욱 심화될 전망이다. 이러한 위험에 효율적으로 대비하기 위해 기후변화 시나리오를 고려하여 미래를 전망하는 것은 매우 중요하며, 최근 연구자들은 불확실성을 고려하기 위해 다양한 시나리오를 적용하고 있는 추세이다. 다만, 기후변화 시나리오를 입력자료로 하여 분석을 수행하는 경우, 새로운 기후변화 시나리오가 생성될 때 기존 기후변화 영향 평가는 무의미해지며, 기존 결과의 신뢰도 또한 감소하게 된다. 지금까지 사용된 시나리오 기반 접근법의 한계를 보완하여 시나리오 중립(Scenario Neutral, SN) 접근법이 개발되었고, 이는 다양한 기후변화 시나리오에 대한 시스템의 반응을 평가하는데 유용하다. 본 연구에서는 시나리오 중립 접근법을 활용하여 가뭄 위험도를 분석하였으며, 이를 위해 금강 유역 내 용담댐 유역을 대상으로 분석을 수행하였다. 입력자료로는 용담댐 유역의 1966~2020년 일단위 강수량 자료를 사용하였고, 문헌 조사를 통해 미래 기후변화에 따른 강수량 변화 추이를 파악하였다. 연평균 강수량의 증가와 여름 강수량의 증가를 기준으로 삼아 증가 비율에 따른 노출 공간을 생성했으며, 목표 변화에 따른 교란된 시계열을 도출해냈다. 이후, 각각의 시계열에 대한 이변량 가뭄빈도분석을 수행하여 재현기간을 산정한 뒤, 목표 변화에 따른 위험도를 비교하였다. 그 결과, 연평균 강수량과 여름 강수량이 현재와 유사한 경우 100년 빈도 가뭄이 발생할 확률은 0.84, 연평균 강수량의 증가가 110%, 여름 강수량의 증가가 115%일 경우 100년 빈도 가뭄이 발생할 확률은 0.79이었다. 추후 실제 미래 기후변화 시나리오를 적용하여 기준치에 따른 만족도를 분석한다면, 가뭄 대응에 유용한 의사결정 도구로 활용될 수 있을 것이다.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.3
/
pp.210-216
/
2015
It is well known that the structure of brain and consciousness of human have a phenomena of complex system. The human emotion have a many kind. The love is one of human emotion, which have been studied in sociology and psychology as a matter of great interested thing. In this paper, we consider a same and different time delay in love equation of Romeo and Juliet. We represent a behavior of love as a time series and phase portrait, and analyze the difference of behaviors between a same and different time delay.
This paper proposes a parsimonious periodic autoregressive (PAR) model. The proposed model performance is evaluated through an analysis of Korean unemployment rate series that is compared with existing models. We exploit some common features among each seasonality and confirm it by LR test for the parsimonious PAR model in order to impose a parsimonious structure on the PAR model. We observe that the PAR model tends to be superior to existing seasonal time series models in mid- and long-term forecasts. The proposed parsimonious model significantly improves forecasting performance.
An estimation model for premiums and components is essential to determine reasonable insurance premiums. In this study, we introduce diverse models for the estimation of property damage premiums(premium, depth and frequency) that include a regression model using a dummy variable, additive independent variable model, autoregressive error model, seasonal ARIMA model and intervention model. In addition, the actual property damage premium data was used to estimate the premium, depth and frequency for each model. The estimation results of the models are comparatively examined by comparing the RMSE(Root Mean Squared Errors) of estimates and actual data. Based on real data analysis, we found that the autoregressive error model showed the best performance.
This article is concerned with asymmetric volatility models for financial time series. A generalization of standard single-threshold volatility model is discussed via multiple-threshold in which we specialize to twothreshold case for ease of presentation. An empirical illustration is made by analyzing S&P500 data from NYSE (New York Stock Exchange). For comparison measures between competing models, parametric bootstrap method is used to generate forecast distributions from which summary statistics of CP (Coverage Probability) and PE (Prediction Error) are obtained. It is demonstrated that our suggestion is useful in the field of asymmetric volatility analysis.
This study attempts to develop a stochastic system model for extension and prediction of monthly runoff series in river basins where the observed runoff data are insufficient although there are long-term hydrometeorological records. For this purpose, univariate models of a seasonal ARIMA type are derived from the time series analysis of monthly runoff, monthly precipitation and monthly evaporation data with trend and periodicity. Also, a causual model of multiple input-single output relationship that take monthly precipitation and monthly evaporation as input variables-monthly runoff as output variable is built by the cross-correlation analysis of each series. The performance of the univariate model and the multiple input-output model were examined through comparisons between the historical and the generated monthly runoff series. The results reveals that the multiple input-output model leads to the improved accuracy and wide range of applicability when extension and prediction of monthly runoff series is required.
Jin, Seol A;Heo, Go Eun;Jeong, Yoo Kyung;Song, Min
Journal of the Korean Society for information Management
/
v.30
no.1
/
pp.285-302
/
2013
This study identified topic shifts and patterns over time by analyzing an enormous amount of Twitter data whose characteristics are high accessibility and briefness. First, we extracted keywords for a certain product and used them for representing the topic network allows for intuitive understanding of keywords associated with topics by nodes and edges by co-word analysis. We conducted temporal analysis of term co-occurrence as well as topic modeling to examine the results of network analysis. In addition, the results of comparing topic shifts on Twitter with the corresponding retrieval results from newspapers confirm that Twitter makes immediate responses to news media and spreads the negative issues out quickly. Our findings may suggest that companies utilize the proposed technique to identify public's negative opinions as quickly as possible and to apply for the timely decision making and effective responses to their customers.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.861-866
/
2022
Seoul introduced the shared bicycle system, "Seoul Public Bike" in 2015 to help reduce traffic volume and air pollution. Hence, to solve various problems according to the supply and demand of the shared bicycle system, "Seoul Public Bike," several studies are being conducted. Most of the research is a strategic "Bicycle Rearrangement" in regard to the imbalance between supply and demand. Moreover, most of these studies predict demand by grouping features such as weather or season. In previous studies, demand was predicted by time-series-analysis. However, recently, studies that predict demand using deep learning or machine learning are emerging. In this paper, we can show that demand prediction can be made a little better by discovering new features or ordering the importance of various features based on well-known feature-patterns. In this study, by ordering the selection of new features or the importance of the features, a better coefficient of determination can be obtained even if the well-known deep learning or machine learning or time-series-analysis is exploited as it is. Therefore, we could be a better one for demand prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.