• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.034 seconds

A Study on the effects of prefrontal lobe neurofeedback training on the corelation of children by timeseries linear analysis (시계열 선형분석을 통한 유아들의 좌우뇌균형에 전전두엽 뉴로피드백 훈련이 미치는 영향 연구)

  • Bak, Ki-Ja;Park, Pyung-Woon;Ahn, Sang-Kyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1673-1679
    • /
    • 2009
  • This study was to examine the effectiveness of prefrontal Neurofeedback training by observing the pre and post brainwave measurement results of about Y kindergarten kids 50 (experimental group 25.comparative group 25) subjects who have shown corelation, in between the months of Mar. 2008 and Nov. 2008. As the brainwaves are adjusted by timeseries linear analysis, the result confirmed the differences of both corelation. The result of the study suggest Neurofeedback technique's possibility in positively affecting the subjects' corelation and mental state.

Non-Response Imputation for Panel Data (패널자료의 무응답 대체법)

  • Pak, Gi-Deok;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.6
    • /
    • pp.899-907
    • /
    • 2010
  • Several non-response imputation methods are suggested, however, mainly cross-sectional imputations are studied and applied to this analysis. A simple and common imputation method for panel data is the cross-wave regression imputation or carry-over imputation as a special case of cross-wave regression imputation. This study suggests a multiple imputation method combined time series analysis and cross-sectional multiple imputation method. We compare this method and the cross-wave regression imputation method using MSE, MAE, and Bias. The 2008 monthly labor survey data is used for this study.

Analysis of Future IDF Curves Using Various Bias Correction Method (다양한 편의보정 기법을 이용한 미래 IDF곡선의 분석)

  • Kim, Sangdan;Kim, Kyungmin;Lee, JeongHoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.323-323
    • /
    • 2018
  • 최근 기후변화에 대한 관심이 증대됨에 따라 미래 기후모델자료를 기반으로 연구가 다양하게 진행되고 있다. 기후변화가 적용된 자료는 미래 수자원관리, 방재를 위한 수공구조물의 설계 등 다양한 방식으로 실무에 적용되고 있다. 하지만 기후모델로부터 모의된 결과는 어느 정도 관측자료와 차이가 발생하게 되며, 이러한 계통적 오차는 모델 내부에서 해결하기가 쉽지 않다. 그렇기 때문에 기후모델로부터 모의된 결과를 보정하기 위해 편의보정 기법을 활용한다. 그리고 미래 기후모델자료는 불확실성을 내재하고 있기 때문에 다양한 편의보정 기법을 적용하여 불확실성의 범위를 확인해 보았다. 사용된 편의보정 기법으로는 Quantile Mapping(QM), Quantile Delta Mapping(QDM), Detrended Quantile Mapping(DQM), Delta Change Method(DCM)을 이용하였다. 편의보정에 적용한 확률분포형은 일반극치분포(GEV분포), Type-1 극치분포(Gumbel분포)를 사용하였다. GEV분포를 기본으로 하여 조건적으로 GEV분포를 사용할 수 없는 경우, Gumbel분포를 사용하였다. 본 연구에서는 독일의 전지구기후모델(Global Climate Model, GCM)인 MPI-ESM-LR에 RCP 8.5 사나리오를 강제장으로 하여 지역기후모델(Regional Climate Model, RCM)인 WRF를 이용하여 동역학적으로 다운스케일한 강우자료를 사용하였다. 강우자료 중에서 강릉, 인천, 부산, 목포지점에 해당하는 자료를 추출하여 연 최대 강우강도 시계열을 산정하고 4가지 편의보정 기법을 이용하여 편의보정을 하였다. 편의보정 수행된 연 최대 강우강도 시계열을 scale-invariance 기법으로 다운스케일하여 미래 IDF곡선을 유도한 뒤, 편의보정별로 유도한 IDF곡선의 비교를 통해 편의보정기법이 미래 IDF곡선에 미치는 영향을 분석하였다.

  • PDF

Time-Invariant Stock Movement Prediction After Golden Cross Using LSTM

  • Sumin Nam;Jieun Kim;ZoonKy Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.59-66
    • /
    • 2023
  • The Golden Cross is commonly seen as a buy signal in financial markets, but its reliability for predicting stock price movements is limited due to market volatility. This paper introduces a time-invariant approach that considers the Golden Cross as a singular event. Utilizing LSTM neural networks, we forecast significant stock price changes following a Golden Cross occurrence. By comparing our approach with traditional time series analysis and using a confusion matrix for classification, we demonstrate its effectiveness in predicting post-event stock price trends. To conclude, this study proposes a model with a precision of 83%. By utilizing the model, investors can alleviate potential losses, rather than making buy decisions under all circumstances following a Golden Cross event.

Power transformation in quasi-likelihood innovations for GARCH volatility (금융 시계열 변동성 추정을 위한 준-우도 이노베이션의 멱변환)

  • Sunah, Chung;Sun Young, Hwang;Sung Duck, Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.755-764
    • /
    • 2022
  • This paper is concerned with power transformations in estimating GARCH volatility. To handle a semi-parametric case for which the exact likelihood is not known, quasi-likelihood (QL) rather than maximum-likelihood method is investigated to best estimate GARCH via maximizing the information criteria. A power transformation is introduced in the innovation generating QL estimating functions and then optimum power is selected by maximizing the profile information. A combination of two different power transformations is also studied in order to increase the parameter estimation efficiency. Nine domestic stock prices data are analyzed to order to illustrate the main idea of the paper. The data span includes Covid-19 pandemic period in which financial time series are really volatile.

Prospects for Extreme Drought Frequency Changes in the Future Using the Modified SPI Index (수정SPI지수를 이용한 미래 극한 가뭄빈도변화 전망)

  • Jeung, Se Jin;Choo, Kyung Su;Kim, Byung Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.38-38
    • /
    • 2020
  • SPI지수는 강수량이 감소하기 시작하면 필요한 물수요에 비해서 상대적으로 물부족을 유발하게 되고, 가뭄발생의 발단이 된다는 것에 착안하여 개발된 지수이다. 하지만 다른 가뭄지수와 마찬가지로 강수량 또는 유출량 시계열을 상대적인 표준정규분포로 산정하였기 때문에 인근 지역에 비해 상대적으로 강수량이 많은 지역도 실제로 발생하지 않은 가뭄이 발생한다고 분석이 된다. 이러한 현상을 완화시키기 위해 수정된 가뭄분석 기법이 요구된다. 이에 Jeung et. al(2019)은 이런 현상을 완화시키기 위해 SPI지수 계산과정에서 해당지점의 시계열을 대상으로 계산되는 Gamma 분포를 전국으로 확장 시켜 산정 후 표준정규분포에 적용하여 가뭄지수를 산정하였다. 또한 과거 제한급수가 발생했던 지역을 대상으로 극한가뭄과 가뭄지속기간을 이용하여 M-SPI지수의 효용성을 확인한 결과, 제한급수 실시년도와 SPI, M-SPI 결과와의 비교결과 과거 가뭄을 정확하게 모사하는 것을 확인하였다. 하지만 M-SPI는 전국을 하나의 지역으로 가정하여 산정하였고, 증발산량과, 고도 등 지형의 특성을 고려하지 않았기 때문에 일부의 가뭄사상을 재현하지 못하였다. 이에 본 연구에서는 기상학적 인자와, 지형학적 인자를 고려하여 지역화를 하고, 각 지역별로 대표 확률분포를 산정하여 가뭄지수를 산정하고자 한다. 또한 한국 기상청에서 제공하고 있는 국가 표준기후변화 시나리오를 수집하여 M-SPI에 적용하여 미래 극한 가뭄빈도의 변화를 전망하고자 한다.

  • PDF

영상차감법을 이용한 산개성단 M11의 변광성 검출

  • Lee, Chung-Uk;Gu, Jae-Rim;Kim, Seung-Ri;Kim, Dong-Jin
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.24.3-24.3
    • /
    • 2009
  • 한국천문연구원에서 개발 중인 외계행성 탐색 시스템은 우리은하 중심부 $4^{\circ}\times4^{\circ}$ 영역을 10분 간격으로 시계열 관측하여 지구형 외계행성을 검출하는 시스템으로써, 대용량의 관측자료를 처리하기 위하여 영상차감법을 사용한다. 이 방법은 최적화 방법을 이용하여 기준영상과 관측영상사이의 점퍼짐함수 변화를 나타내는 커널을 구하고, 이를 적용하여 만든 합성영상과 관측영상을 서로 차감한 잔차영상에서 밝아지거나 어두워진 변광성을 찾아 내어 이들에 대한 구경측광 또는 점퍼짐함수 측광과정을 수행한다. 따라서 성단 및 은하중심부와 같이 별들이 밀집된 관측영역에 영상차감법을 이용하면 배경별들은 모두 제거되고 변광성만 남게 되므로 잔차영상의 분석을 통하여 변광성 검출 효율을 높일 수 있게 된다. 우리는 이 연구에서 구재림 등 (2007)에 의하여 수행된 산개성단 M11의 시계열관측 영상에 이 방법을 적용하여 얻은 새로운 결과와 기존 연구결과를 서로 비교하고, 변광성의 검출 효율과 측광 정밀도에 대하여 논의한다.

  • PDF

경기도 평택지역과 서울 정동지역 지표오존농도의 시계열모형 연구

  • Lee, Hun-Ja
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.29-36
    • /
    • 2006
  • 최근 유해성이 강한 지표오존농도가 대기환경의 주요한 문제로 부각되고 있다. 본 연구에서는 경기도 평택과 서울 정동지역의 오존농도를 설명 변수를 사용할 수 있는 다변량 시계열 모형인 ARE(자기회귀오차) 모형으로 분석하였다. ARE모형에서는 오존 전체자료를 사용한 전체모형과 오존농도가 41ppb 이상 되는 자료를 사용한 부분모형 두 가지 모형을 비교하였다. ARE의 오존농도 설명변수로는 오존농도와 연관 있는 8종류의 기상자료와 4종류의 대기오염자료를 고려하였다. 기상자료의 8가지 설명변수로 일 최고온도, 일사량, 풍속, 상대습도, 강수량, 이슬점온도, 수증기압, 운량 자료를 사용하였다. 대기오염자료의 4가지 설명변수로는 아황산가스(SO2), 이산화질소(NO2), 코발트(CO)와 프로메툼 10(PM10)를 사용하였다.

  • PDF

Spatial Analysis of Garorim bay by using Tidal Flat Surface Temperature and NDVI (가로림만의 갯벌 지표온도와 식생지수에 의한 공간분석)

  • Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • Human activity such as agriculture, industrial development and urban sprawl has been the major threat to wetlands ecosystem, which have caused the greatest losses of coastal wetlands. The Garorim bay provides one of the most important wetland habitate and Ministry of Oceans and Fisheries designated Garorim bay to marine ecosystem protected area in July 2016. The purpose of this research is to analysis the spatial pattern of Garorim bay using Landsat 5 (TM), Landsat 7 (ETM+), Landsat 8 (OLI & TIRS). The surface temperature and NDVI of Garorim bay were processed with spatial analysis method and time series analysis were applied to 25 years Landsat satellite 19 images. The results of time series distribution map compared with the several wetland habitate on remotely sensed images. Landsat images showed the change area of wetland vegetation distribution from 1988 to 2014. The southern part habitate of Garorim bay have been changed with vegetation patterns on coastal wetland which were covered with tidal flat.

Studies on the Variation Pattern of Water Resources and their Generation Models by Simulation Technique (Simulation Technique에 의한 수자원의 변동양상 및 그 모의발생모델에 관한 연구)

  • Lee, Sun-Tak;An, Gyeong-Su;Lee, Ui-Rak
    • Water for future
    • /
    • v.9 no.2
    • /
    • pp.87-100
    • /
    • 1976
  • These studies are aimed at the analysis of systematic variation pattern of water resources in Korean river catchments and the development of their simulation models from the stochastic analysis of monthly and annual hydrologic data as main elements of water resources, i.e. rainfall and streamflow. In the analysis, monthly & annual rainfall records in Soul, Taegu, Pusan and Kwangju and streamflow records at the main gauging stations in Han, Nakdong and Geum river were used. Firstly, the systematic variation pattern of annual streamflow was found by the exponential function relationship between their standard deviations and mean values of log-annual runoff. Secondly, stochastic characteristics of annual rainfall & streamflow series were studied by the correlogram Monte Carlo method and a single season model of 1st-order Markov type were applied and compared in the simulation of annual hydrologic series. In the simulation, single season model of Markov type showed better results than LN-model and the simulated data were fit well with historical data. But it was noticed that LN-model gave quite better results in the simulation of annual rainfall. Thirdly, stochastic characteristics of monthly rainfall & streamflow series were also studied by the correlogram and spectrum analysis, and then the Model-C, which was developed and applied for the synthesis of monthly perennial streamflow by lst author and is a Markov type model with transformed skewed random number, was used in the simulation of monthly hydrologic series. In the simulation, it was proved that Model-C was fit well for extended area in Korea and also applicable for menthly rainfall as well as monthly streamflow.

  • PDF