• Title/Summary/Keyword: 시계열 비교분석

Search Result 700, Processing Time 0.027 seconds

Statistical Modeling for Forecasting Maximum Electricity Demand in Korea (한국 최대 전력량 예측을 위한 통계모형)

  • Yoon, Sang-Hoo;Lee, Young-Saeng;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.1
    • /
    • pp.127-135
    • /
    • 2009
  • It is necessary to forecast the amount of the maximum electricity demand for stabilizing the flow of electricity. The time series data was collected from the Korea Energy Research between January 2000 and December 2006. The data showed that they had a strong linear trend and seasonal change. Winters seasonal model, ARMA model were used to examine it. Root mean squared prediction error and mean absolute percentage prediction error were a criteria to select the best model. In addition, a nonstationary generalized extreme value distribution with explanatory variables was fitted to forecast the maximum electricity.

Time Series Data Processing Deep Learning system for Prediction of Hospital Outpatient Number (병원 외래환자수의 예측을 위한 시계열 데이터처리 딥러닝 시스템)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.2
    • /
    • pp.313-318
    • /
    • 2021
  • The advent of the Deep Learning has applied to many industrial and general applications having an impact on our lives these days. Certain type of machine learning model is needed to be designed for a specific problem of field. Recently, there are many instances to solve the various COVID-19 related problems using deep learning model. Therefore, in this paper, a deep learning model for predicting number of outpatients of a hospital in advance is suggested. The suggested deep learning model is designed by using the Keras in Jupyter Notebook. The prediction result is being analyzed with the real data in graph, as well as the loss rate with some validation data to verify either for the underfitting or the overfitting.

Histogram Comparing Technique for Similarity Search in Time-Series Data (시계열 데이터의 유사성 검색을 위한 히스토그램 비교법)

  • 임동혁;김창룡;정진완
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.331-333
    • /
    • 1999
  • 데이터웨어하우스의 주된 용도는 비즈니스 의사결정이며, 이를 위한 경향 및 패턴을 찾는 문제는 매우 중요한 연구분야이다. 경향 및 패턴은 데이터웨어하우스 내의 데이터간의 상호관계를 분석함으로써 찾을 수 있는데, 이를 위한 유사성 검색기법 중 특히 뛰어난 3가지 기법들을 자세히 알아보고, 이들에 모두 적용 가능한 히스토그램 비교법을 제안하였다. 제안된 히스토그램 비교법을 이용하면 유클리디안 거리측정의 부담을 대폭 줄여, 전체 처리시간을 비약적으로 감소시킬 수 있다.

  • PDF

A Study on the Vitalization Strategy Based on Current Status Analysis of National Archives (국내외 국립기록관의 트위터 운용 현황 분석 및 활성화 방안)

  • Gang, JuYeon;Kim, TaeYoung;Choi, JungWon;Oh, Hyo-Jung
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.3
    • /
    • pp.263-285
    • /
    • 2016
  • Nowadays, Social Network Service (SNS), which has been in the spotlight as a way of communication, has become a most effective tool to improve easy of information use and accessibility for users. In this paper, we chose Twitter as the most representative SNS services because of automatic crawling and investigated tweet data gathered from domestic and foreign National Archives - NARA of U.S.A., TNA of U.K.. NAA of Australia, and National Archives of Korea. We also conducted information genres analysis and trend analysis by timeline. Information genres analysis shows how archives satisfied users' information needs as well as trends analysis of tweets helps to understand how users' interestedness was changed. Based on comparison results, we distilled four characteristics of National Archives and suggested vitalization ways for National Archives of Korea.

Domestic and Overseas Research Trends Analysis of Archives and Records Management based on Online Public International Journals (온라인 공개 국제학술지 기반 국내·외 기록관리학 연구동향 분석 - 지리적 시간적 비교 -)

  • Kim, Sung-Hwan;Oh, Hyo-Jung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.2
    • /
    • pp.165-189
    • /
    • 2018
  • The goal of this study is to determine domestic and overseas research trends of archives and records management. To overcome limitations of existing research trends analysis, we selected 8 international journals and visualized impact factors geographically based on published articles from 2000 to 2017. And then we performed timeline based contents analysis. To compare with domestic and overseas trends, we selected 6 domestic journals of archives and records management and analyzed by same ways. Based on the results, we investigated the marco trends in archives and records management, identified the difference among countries, and finally predicted the future research trends.

Time-series Change Analysis of Quarry using UAV and Aerial LiDAR (UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석)

  • Dong-Hwan Park;Woo-Dam Sim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • Recently, due to abnormal climate caused by climate change, natural disasters such as floods, landslides, and soil outflows are rapidly increasing. In Korea, more than 63% of the land is vulnerable to slope disasters due to the geographical characteristics of mountainous areas, and in particular, Quarry mines soil and rocks, so there is a high risk of landslides not only inside the workplace but also outside.Accordingly, this study built a DEM using UAV and aviation LiDAR for monitoring the quarry, conducted a time series change analysis, and proposed an optimal DEM construction method for monitoring the soil collection site. For DEM construction, UAV and LiDAR-based Point Cloud were built, and the ground was extracted using three algorithms: Aggressive Classification (AC), Conservative Classification (CC), and Standard Classification (SC). UAV and LiDAR-based DEM constructed according to the algorithm evaluated accuracy through comparison with digital map-based DEM.

Improvement of Small Baseline Subset (SBAS) Algorithm for Measuring Time-series Surface Deformations from Differential SAR Interferograms (차분 간섭도로부터 지표변위의 시계열 관측을 위한 개선된 Small Baseline Subset (SBAS) 알고리즘)

  • Jung, Hyung-Sup;Lee, Chang-Wook;Park, Jung-Won;Kim, Ki-Dong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.165-177
    • /
    • 2008
  • Small baseline subset (SBAS) algorithm has been recently developed using an appropriate combination of differential interferograms, which are characterized by a small baseline in order to minimize the spatial decorrelation. This algorithm uses the singular value decomposition (SVD) to measure the time-series surface deformation from the differential interferograms which are not temporally connected. And it mitigates the atmospheric effect in the time-series surface deformation by using spatially low-pass and temporally high-pass filter. Nevertheless, it is not easy to correct the phase unwrapping error of each interferogram and to mitigate the time-varying noise component of the surface deformation from this algorithm due to the assumption of the linear surface deformation in the beginning of the observation. In this paper, we present an improved SBAS technique to complement these problems. Our improved SBAS algorithm uses an iterative approach to minimize the phase unwrapping error of each differential interferogram. This algorithm also uses finite difference method to suppress the time-varying noise component of the surface deformation. We tested our improved SBAS algorithm and evaluated its performance using 26 images of ERS-1/2 data and 21 images of RADARSAT-1 fine beam (F5) data at each different locations. Maximum deformation amount of 40cm in the radar line of sight (LOS) was estimated from ERS-l/2 datasets during about 13 years, whereas 3 cm deformation was estimated from RADARSAT-1 ones during about two years.

Development of a Machine Learning Model for Imputing Time Series Data with Massive Missing Values (결측치 비율이 높은 시계열 데이터 분석 및 예측을 위한 머신러닝 모델 구축)

  • Bangwon Ko;Yong Hee Han
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.176-182
    • /
    • 2024
  • In this study, we compared and analyzed various methods of missing data handling to build a machine learning model that can effectively analyze and predict time series data with a high percentage of missing values. For this purpose, Predictive State Model Filtering (PSMF), MissForest, and Imputation By Feature Importance (IBFI) methods were applied, and their prediction performance was evaluated using LightGBM, XGBoost, and Explainable Boosting Machines (EBM) machine learning models. The results of the study showed that MissForest and IBFI performed the best among the methods for handling missing values, reflecting the nonlinear data patterns, and that XGBoost and EBM models performed better than LightGBM. This study emphasizes the importance of combining nonlinear imputation methods and machine learning models in the analysis and prediction of time series data with a high percentage of missing values, and provides a practical methodology.

Comparative Analysis of Drought Characteristics Considering Various Drought Definitions (다양한 가뭄정의에 따른 가뭄 특성 비교분석)

  • Yoo, Ji-Young;Park, Jong-Yong;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.367-371
    • /
    • 2010
  • 가뭄 발생원인은 기후학적인 인자(온도, 바람, 상대습도 등)들과 밀접한 관계를 갖고 있으나, 가장 큰 원인은 강수부족이라고 말할 수 있다. 따라서 가뭄은 정상수준 이하의 강수 상황이 연속적으로 발생하여 나타나며, 설정된 절단수준에 대해 가뭄의 지속기간, 심도, 발생간격 등을 정의한 후 이에 대한 시계열 분석을 수행하여 가뭄의 특성을 분석한다. 본 연구에서는 가뭄 절단수준의 변화에 따른 한반도 내 가뭄의 특성분석을 위하여 하나의 절단수준으로 고정된 경우의 가뭄특성과 각 년도 월별 특성을 고려하여 절단수준이 지속적으로 변화하는 경우로 구분하여, 가뭄특성의 변화를 분석하였다. 또한 위 두 가지 경우에 대해 각각 가뭄해소 여부를 판단하여 총 4가지 경우에 따른 가뭄 특성을 분석하였다. 가뭄 절단수준의 변화 및 가뭄 해소여부에 따른 한반도 내 가뭄 특성을 분석하기 위해, 가뭄의 지속기간, 심도의 기초통계량 등을 산정하여 비교 분석하였다. 본 연구는 한반도 내의 가뭄특성을 보다 정확하게 해석하기 위해서는 다양한 가뭄정의에 따라 가뭄 해석결과가 나타내는 상대적 차이를 비교할 필요성이 있음을 증명하였다.

  • PDF

Modelling and Residual Analysis for Water Level Series of Upo Wetland (우포늪 수위 자료의 시계열 모형화 및 잔차 분석)

  • Kim, Kyunghun;Han, Daegun;Kim, Jungwook;Lim, Jonghun;Lee, Jongso;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.66-76
    • /
    • 2019
  • Recently, natural disasters such as floods and droughts are frequently occurred due to climate change and the damage is also increasing. Wetland is known to play an important role in reducing and minimizing the damage. In particular, water level variability needs to be analyzed in order to understand the various functions of wetland as well as the reduction of damage caused by natural disaster. Therefore, in this study, we fitted water level series of Upo wetland in Changnyeong, Gyeongnam province to a proper time series model and residual test was performed to confirm the appropriateness of the model. In other words, ARIMA model was constructed and its residual tests were performed using existing nonparametric statistics, BDS statistic, and Close Returns Histogram(CRH). The results of residual tests were compared and especially, we showed the applicability of CRH to analyze the residuals of time series model. As a result, CRH produced not only accurate randomness test result, but also produced result in a simple calculation process compared to the other methods. Therefore, we have shown that CRH and BDS statistic can be effective tools for analyzing residual in time series model.