Journal of Korean Society of Coastal and Ocean Engineers
/
v.21
no.3
/
pp.254-265
/
2009
The estimation of the extreme sea level is necessary in the design of offshore or coastal structures. In this paper, the storm surge data calculated numerically at 52 harbors around the Korean Peninsula are analyzed by using annual maximum series(AMS), peaks over threshold(POT) and empirical simulation technique(EST). The maximum likelihood method was used to estimate the parameters in both AMS and POT models. The Generalized Pareto distribution was used and Chi-square and Kolmogorov-Smirnov goodness-of-fit tests were performed with the acceptable significance level 5%. The extreme sea levels were also evaluated by EST including tide effect, showing similar results as given by Jeong et al.(2008).
This study employs traditional statistical auto-regressive integrated moving average (ARIMA) and deep learning-based long short-term memory (LSTM) models to predict the deformation of earth retaining walls using inclinometer data from excavation sites. It compares the predictive capabilities of both models. The ARIMA model excels in analyzing linear patterns as time progresses, while the LSTM model is adept at handling complex nonlinear patterns and long-term dependencies in the data. This research includes preprocessing of inclinometer measurement data, performance evaluation across various data lengths and input conditions, and demonstrates that the LSTM model provides statistically significant improvements in prediction accuracy over the ARIMA model. The findings suggest that LSTM models can effectively assess the stability of retaining walls at excavation sites. Additionally, this study is expected to contribute to the development of safety monitoring systems at excavation sites and the advancement of time series prediction models.
Proceedings of the Korean Institute of Communication Sciences Conference
/
1991.10a
/
pp.167-173
/
1991
현재까지 가입자 트래픽 예측방법은 계량학적 방법중 추세분석 방법을 이용하고 있는데, 이 방법은 급변하는 시장상황이나 지역여건을 고려하지 못하고 하나의 통계적 기술에 의한 획일화된 예측방법으로서 트래픽예측치가 실제 운용트래픽값과는 다소 차이가 있어왔다. 이러한 원인을 제거할 수 있는 하나의 방법으로서 Box-Jenkins 시계열 분석에 의한 트래픽 예측방법을 제안하고자 한다. 이 방법에 대한 이론을 살펴보고, 시뮬레이션을 통하여 얻은 결과를 각각 분석하여 문제점을 파악하고 실측치와 비교분석함으로서 본 논문에서 제안한 방법이 기존방법보다 타당함을 입증하려 하였다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.23-23
/
2020
하구 관측은 조사 방법 및 주기에 따라 크게 두 가지로 구분되는데, 첫째는 현장에서 직접 주기적으로 자료를 수집하는 정기 현장관측과 다른 하나는 고정된 지점에 관측소를 설치하여 실시간으로 연속된 자료를 수집하는 실시간 관측으로 분류된다. 본 연구는 하구 관측망 체계를 확립하기 위한 기초 연구로서 금강하구역을 대상으로 모의된 수치 모델 자료를 이용하여 관측망을 설계하기 위한 대표 모니터링 지표를 선정하고, 이를 기반으로 관측 지점을 설계하기 위한 전략을 제시하였다. 대표 모니터링 지표는 실제 현장에서 일반적으로 취득할 수 있는 6가지 항목(수온, 염분, 용존산소, 클로로필a, 총질소, 총인)을 대상으로 EOF 분석을 실시하여 해역의 시공간 분포를 대표할 수 있다고 판단되는 2개의 항목을 선정하였다. 대표 모니터링 지점은 2개의 대표 모니터링 지표에 대한 고유 벡터 사이의 각도를 벡터의 내적으로 계산하고 이를 설계변수로 활용하여 도식최적화 기법을 통해 각 모니터링 항목들에 대한 공간 분포를 가장 잘 재현해 낼 수 있는 지점의 개수와 위치를 선정하였다. 선정된 모니터링 지점들을 이용하여 재구성된 공간 분포를 참값(수치모델)과 비교하여 통계적 적정성 여부를 평가하였으며, 이를 통해 금강하구의 대표 모니터링 지점들을 도출 해 내었다. 금강하구의 정기 현장 관측에 대한 대표 모니터링 지점은 7개로 선정되었으며, 이들은 6가지 관측 항목들에 대해서 매우 높은 공간분포 재현율을 확보할 수 있음을 확인하였다. 또한, 담수가 비정기적으로 방류되는 금강하구 시스템의 지역적 특성에 대한 시계열 정보를 연속적으로 가장 잘 취득할 수 있는 실시간 관측소 설치 영역을 결정하기 위하여, 7개의 대표 모니터링 지점에서의 시계열 정보를 금강하구둑 전면과 외해의 시계열 정보와 비교분석하여 설치가능 지점을 영역으로 제언하였다.
Communications for Statistical Applications and Methods
/
v.17
no.2
/
pp.263-273
/
2010
Missing values in time series can be treated as unknown parameters and estimated by maximum likelihood or as random variables and predicted by the conditional expectation of the unknown values given the data. The purpose of this study is to impute missing values which are regarded as the maximum likelihood estimator and random variable in incomplete data and to compare with two methods using ARMA and STAR model. For illustration, the Mumps data reported from the national capital region monthly over the years 2001~2009 are used, and estimate precision of missing values and forecast precision of future data are compared with two methods.
In Korea, as the mortality rate improves in a shorter period of time than in developed countries, it is important to consider the selection of the time series as well as the model selection in the mortality projection. Therefore, this study proposed a method using the multiple regression model in respect to the selection of the time series period. In addition, we investigate the problems that arise when various time series are used based on the Lee-Carter (LC) model, the kinds of LC model along with Lee-Miller (LM) and Booth-Maindonald-Smith (BMS), and the non-parametric model such as functional data model (FDM) and Coherent FDM, and examine differences in the age-specific mortality rate and life expectancy projection. Based on the analysis results, the age-specific mortality rate and predicted life expectancy of men and women are calculated for the year 2030 for each model. We also compare the mortality rate and life expectancy of the next generation provided by Korean Statistical Information Service (KOSIS).
Sequence matching in time-series databases is an operation that finds the data sequences whose changing patterns are similar to that of a query sequence. Typically, sequence matching hires a multi-dimensional index for its efficient processing. In order to alleviate the dimensionality curse problem of the multi-dimensional index in high-dimensional cases, the previous methods for sequence matching apply the Discrete Fourier Transform(DFT) to data sequences, and take only the first two or three DFT coefficients as organizing attributes of the multi-dimensional index. This paper first points out the problems in such simple methods taking the firs two or three coefficients, and proposes a novel solution to construct the optimal multi -dimensional index. The proposed method analyzes the characteristics of a target database, and identifies the organizing attributes having the best discrimination power based on the analysis. It also determines the optimal number of organizing attributes for efficient sequence matching by using a cost model. To show the effectiveness of the proposed method, we perform a series of experiments. The results show that the Proposed method outperforms the previous ones significantly.
Kim, Yong-Jeon;Lee, Chan-Joo;Kwon, Sung-Il;Kim, Won
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.467-471
/
2010
유속지수법(index velocity method)은 수위-유량관계에 유속을 추가적인 지수로 이용하는 방법이며 현재 자동유량측정 방법으로 널리 사용되고 있는 기법이다. 유속지수법에 많이 사용되는 측정 장비는 초음파유량계와 Acoustic Doppler Velocity Meter(ADVM) 등으로 모두 연속적인 수위와 유속을 측정하여 시계열 유량 자료를 생산하기 때문에 고리형 수위-유량관계의 재현이 가능하다. 기존의 연구에서 유속지수법은 괴산댐 하류에 적용되어 댐 방류량대비 평균 7%의 상대오차를 보였고, 시간에 따른 오차 발생이 적어 수위-유량관계에 비해 효율적으로 나타났다. 하지만 댐방류량에 의해 영향받는 구간에서는 고리형 수위-유량관계 재현에 한계를 나타냈다. 따라서 본 연구에서는 일반 자연하천인 임진강 적성지점에 ADVM을 설치하였고, 수위-단면적 관계와 평균유속($V_m$)-지표유속($V_i$) 관계를 수립하여 유속지수법에 의한 시계열 유량자료를 산정하였다. 산정된 유량자료는 측정 유량과 비교하여 정확도를 분석하였고, 시계열 유량 자료로부터 고리형 수위-유량관계를 재현하였다. 2009년 6월부터 9월까지 운영된 ADVM 자료로부터 산정된 유속지수법 최대 유량은 $10,491m^3/s$였으며, 총 18회의 실측 유량과 비교한 유속지수법 유량은 평균 7%의 상대오차를 나타냈다. 시계열 자료로부터 재현된 고리형 수위-유량관계는 임진강 적성지점의 경우 수위관측소 수위 10m, 유량 $2,000m^3/s$부터 발생하였다. 2009년 8월 11일 첨두유량 $8,000m^3/s$홍수 사상에서 발생한 고리형 수위-유량관계의 경우 수위 14m에서 $1,230m^3/s$의 유량차이를 보였고, 동일한 유량 $6,000m^3/s$에서 1.2m의 수위차이를 보였다. 2009년 8월 26일 첨두유량 $10,000m^3/s$에서 발생한 고리형 수위-유량관계에서도 마찬가지로 수위 16m에서 $1,670m^3/s$의 유량차, 유량 $8,000m^3/s$에서 수위 1.3m의 차이를 나타냈다. 이와 같이 유속지수법은 기존의 수위-유량관계가 가지는 한계점을 보완하여 고리형 수위-유량관계 재현이 가능하기 때문에 보다 정확한 유량 산정이 가능할 것으로 판단된다.
Missing value replacement is one of the big issues in data analysis. If you ignore the occurrence of the missing value and proceed with the analysis, a bias can occur and give incorrect results for the estimate. In this paper, we need to find and apply an appropriate alternative to missing data from weather data. Through this, we attempted to clarify and compare the simulations for various situations using existing methods such as MICE and MissForest based on R and time series-based models. When comparing these results with each variable, it was determined that the kalman filter of the auto arima model using the ImputeTS package and the MissForest model gave good results in the weather data.
If the future can be predicted from network traffic data, which is a time series, it can achieve effects such as efficient resource allocation, prevention of malicious attacks, and energy saving. Many models based on statistical and deep learning techniques have been proposed, and most of these studies have focused on improving model structures and learning algorithms. Another approach to improving the prediction performance of the model is to obtain a good-quality data. With the aim of obtaining a good-quality data, this paper applies a dense sampling technique that augments time series data to the application of network traffic prediction and analyzes the performance improvement. As a dataset, UNSW-NB15, which is widely used for network traffic analysis, is used. Performance is analyzed using RMSE, MAE, and MAPE. To increase the objectivity of performance measurement, experiment is performed independently 10 times and the performance of existing sparse sampling and dense sampling is compared as a box plot. As a result of comparing the performance by changing the window size and the horizon factor, dense sampling consistently showed a better performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.