• Title/Summary/Keyword: 시계열 및 군집 분석

Search Result 48, Processing Time 0.028 seconds

Spatial Autocorrelation Characteristic Analysis on Bayesian ensemble Precipitation of Nakdong River Basin (낙동강유역 강우의 공간자기상관 특성분석을 통한 베이지안 앙상블 강우 검증)

  • Moon, Soo Jin;Sun, Ho Young;Kang, Boo Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.411-411
    • /
    • 2017
  • 유역 내 발생하는 강우의 공간적인 분포는 인접성 및 거리에 따라 달라질 수 있다. 공간자기상관 분석은 공간단위(유역 또는 행정구역)의 변수(강수 등)가 주변지역과 갖는 관계를 통해 얼마나 분산되어 있는지 혹은 군집되어 있는지를 판별하는 기법으로 최근 많은 연구에서 활성화 되고 있다. 본 연구에서는 낙동강유역을 대상으로 1980~2000년까지 20개년의 기상청을 통해 수집한 강우자료와 CMIP5(Coupled Model Intercomparison Project Phase 5)에서 제공하는 기후변화 자료 중 가용할 수 있는 20개 모델의 강우를 수집하였다. 기후변화 자료는 정상성 분위사상법으로 지역오차보정을 실시하고 불확실성을 저감하고자 베이지안 모델 평균기법을 통해 새로운 시계열을 생성하였다. 생성된 시계열의 공간적인 분포를 정량적으로 평가하고자 중권역별 공간자기상관 분석을 수행하였다. 대부분의 연구에서는 GIS를 활용하여 정성적으로 강우의 분포를 나타내고 있지만 본 연구에서는 공간단위의 인접성 또는 거리에 따른 척도를 기반으로 공간자기상관을 탐색할 수 있는 Moran's I와 LISA(Local Indicators of Spatial Association)기법을 적용하였다. Moran's I는 전체 연구지역에 대한 관계를 하나의 값으로 보여주는 전역적인 기법이며, LISA는 상대적으로 넓은 지역을 국지적으로 구분하여 특정지역에 대한 Hot spot 및 Cold spot을 통해 공간자기상관 정도를 나타내는 국지적인 기법이다. 두 기법을 적용하기 위하여 인접성 기반의 공간매트릭스를 산정하고 계절별 관측값과 베이지안 앙상블 강우의 Moran's I 및 LISA 분석을 실시하였다. 관측자료와 베이지안 앙상블 강우의 분석결과가 매우 유사하게 나타남으로써 베이지안 앙상블 강우의 공간적인 분포가 관측강우를 충분히 재현하고 있다고 판단된다.

  • PDF

A Study on Market Analysis of Seoul's Commercial Districts by Food Service Sector Using Sales per Store (점포당 매출액을 활용한 서울 소재 외식업종별 상권 분석에 관한 연구)

  • Sora Jang;Jaeho Hwang;Sooyon Seo;Moohong Min
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.398-401
    • /
    • 2023
  • 본 연구는 서울소재 외식업종의 6년간 점포당 매출액 데이터를 이용해 시계열 군집분석을 수행, 업종 및 지역별 상권을 세분화하고 '성장 상권'부터 '쇠퇴 상권'에 이르기까지 재정의한다. 이를 통해 예비 창업자와 소상공인이 업종과 지역을 선정하는 지표들을 분석하고 연구하였다.

An Explorator Spatial Analysis of Shigellosis (세균성 이질의 탐색적 공간분석)

  • 박기호
    • Journal of the Korean Geographical Society
    • /
    • v.34 no.5
    • /
    • pp.473-491
    • /
    • 1999
  • 세균성 이질은 국내 제1종 법정 전염병으로 분류되어 관리되고 있는 질환으로서 1998년 이후 그 발병 사례가 급속히 증가하고 있다. 본 연구는 1999년 3월 부산시 사상구에서 집단 발병한 세균성 이질을 대상으로 하여, 각 환자들의 발병 시점과 장소의 분포패턴에 대한 지리학적 고찰을 목적으로 한다. 환자분포의 특징적 공간패턴과 그들의 시계열적 확산 양상 등을 탐색하기 위한 방법론은 보건지리학과 지도학 및 공간통계학에 기반을 둔 공간분석기법을 중심으로 설정하였다. 분석자료는 해당 지역의 수치지형도, 지적도, 인구 센서스 자료를 포함한 GIS 데이터베이스로 구축되었다. 인구분포를 감안한 밀도구분도를 바탕으로 개별환자의 위치자료와 동 단위로 집계된 자료를 자료의 형태에 따라 분석기법을 달리하였으며, 환자 발생 밀도, 상대적 위험지수 등을 지도화하여 역학자료의 시각적 통계적 분석을 수행하였다. 환자분포의 공간적 중심위치와 분산의 변화 등 기술적 통계분석과 함께 제1차 공간속성을 커널추정법으로 찾아보았다. 이와 더불어 ‘공간적 의존성’과 관련된 제2차 공간속성은 K-함수와 시뮬레이션을 통해 분석하여 군집성 등이 통계적으로 확인되었다. 본 연구를 통해 역학조사시 GIS의 활용사례가 제시되었으며, 모집단 인구를 고려한 확률지도 작성 기법과 다양한 데이터 가시화 방법, 그리고 시계열별 발생 환자들의 지리적 변이를 분석 하는데 따르는 문제들이 논의되었다.

  • PDF

Non-linearity Mitigation Method of Particulate Matter using Machine Learning Clustering Algorithms (기계학습 군집 알고리즘을 이용한 미세먼지 비선형성 완화방안)

  • Lee, Sang-gwon;Cho, Kyoung-woo;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.341-343
    • /
    • 2019
  • As the generation of high concentration particulate matter increases, much attention is focused on the prediction of particulate matter. Particulate matter refers to particulate matter less than $10{\mu}m$ diameter in the atmosphere and is affected by weather changes such as temperature, relative humidity and wind speed. Therefore, various studies have been conducted to analyze the correlation with weather information for particulate matter prediction. However, the nonlinear time series distribution of particulate matter increases the complexity of the prediction model and can lead to inaccurate predictions. In this paper, we try to mitigate the nonlinear characteristics of particulate matter by using cluster algorithm and classification algorithm of machine learning. The machine learning algorithms used are agglomerative clustering, density-based spatial clustering of applications with noise(DBSCAN).

  • PDF

A Study on Price Volatility and Properties of Time-series for the Tangerine Price in Jeju (제주지역 감귤가격의 시계열적 특성 및 가격변동성에 관한 연구)

  • Ko, Bong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.212-217
    • /
    • 2020
  • The purpose of this study was to analyze the volatility and properties of a time series for tangerine prices in Jeju using the GARCH model of Bollerslev(1986). First, it was found that the time series for the rate of change in tangerine prices had a thicker tail rather than a normal distribution. At a significance level of 1%, the Jarque-Bera statistic led to a rejection of the null hypothesis that the distribution of the time series for the rate of change in tangerine prices is normally distributed. Second, the correlation between the time series was high based on the Ljung-Box Q statistic, which was statistically verified through the ARCH-LM test. Third, the results of the GARCH(1,1) model estimation showed statistically significant results at a significance level of 1%, except for the constant of the mean equation. The persistence parameter value of the variance equation was estimated to be close to 1, which means that there is a high possibility that a similar level of volatility will be present in the future. Finally, it is expected that the results of this study can be used as basic data to optimize the government's tangerine supply and demand control policy.

Analysis of Relative Settlement Behavior of Retaining Wall Backside Ground Using Clustering (군집분류를 이용한 흙막이 벽체 배면 지반의 상대적 침하거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.189-200
    • /
    • 2023
  • As urbanization and industrialization increase development in downtown areas, damage due to ground settlement continues to occur. Building collapse in urban has a high risk of leading to large-scale damage to life and property. However, there has rarely been studied on measurement data analysis methods when uneven loads are applied to the excavated ground and no prior knowledge of the ground. Accordingly, it was attempted to analyze the relative settlement behavior and correlation by processing the time-series surface settlement of construction sites in the urban. In this paper, the average index of difference in settlement and average of relative difference in settlement are defined and calculated, then plotted in the coordinate system to analyze the relative settlement behavior over time. In addition, since there was no prior knowledge of the ground, a standard to classify the clusters was needed, and the observation points were classified into using k-means clustering and Dunn Index. As a result of the analysis, it was confirmed that all the clusters moved to the stable region as the settlement amount converges. The clusters were segmented. Based on the analysis results, it was possible to distinguish between the independent displacement area and same behavior area by analyzing the correlation between measurement points. If possible to analyze the relative settlement behavior between the stations and classify the behavior areas, it can be helpful in settlement and stability management, such as uplift of the surrounding area, prediction of ground failure area, and prevention of activity failure.

Time Series Analysis of Intellectual Structure and Research Trend Changes in the Field of Library and Information Science: 2003 to 2017 (문헌정보학 분야의 지적구조 및 연구 동향 변화에 대한 시계열 분석: 2003년부터 2017년까지)

  • Choi, Hyung Wook;Choi, Ye-Jin;Nam, So-Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.35 no.2
    • /
    • pp.89-114
    • /
    • 2018
  • Research on changes in research trends in academic disciplines is a method that enables observation of not only the detailed research subject and structure of the field but also the state of change in the flow of time. Therefore, in this study, in order to observe the changes of research trend in library and information science field in Korea, co-word analysis was conducted with Korean author keywords from three types of journals which were listed in the Korea Citation Index(KCI) and have top citation impact factor were selected. For the time series analysis, the 15-year research period was accumulated in 5-years units, and divided into 2003~2007, 2003~2012, and 2003~2017. The keywords which limited to the frequency of appearance 10 or more, respectively, were analyzed and visualized. As a result of the analysis, during the period from 2003 to 2007, the intellectual structure composed with 25 keywords and 8 areas was confirmed, and during the period from 2003 to 2012, the structure composed by 3 areas 17 sub-areas with 76 keywords was confirmed. Also, the intellectual structure during the period from 2003 to 2017 was crowded into 6 areas 32 consisting of a total of 132 keywords. As a result of comprehensive period analysis, in the field of library and information science in Korea, over the past 15 years, new keywords have been added for each period, and detailed topics have also been subdivided and gradually segmented and expanded.

Design of a Sound Classification System for Context-Aware Mobile Computing (상황 인식 모바일 컴퓨팅을 위한 사운드 분류 시스템 설계)

  • Kim, Joo-Hee;Lee, Seok-Jun;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1305-1308
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자의 실시간 상황 인식을 위한 효과적인 사운드 분류 시스템을 제안한다. 이 시스템에서는 PCM 형태의 사운드 입력 데이터에 대한 전처리를 통해 고요한 사운드와 화이트 노이즈를 학습 및 분류 단계 이전에 미리 여과함으로써, 계산 자원의 불필요한 소모를 막을 수 있다. 또한 에너지 레벨이 낮아 신호의 패턴을 파악하기 어려운 사운드 데이터는 증폭함으로써, 이들에 대한 분류 성능을 향상시킬 수 있다. 또, 제안하는 사운드 분류 시스템에서는 HMM 분류 모델의 효율적인 학습과 적용을 위해 k-평균 군집화를 이용하여 특징 벡터들에 대한 차원 축소와 이산화를 수행하고, 그 결과를 모아 일정한 길이의 시계열 데이터를 구성하였다. 대학 연구동내 다양한 일상생활 상황들에서 수집한 8가지 유형의 사운드 데이터 집합을 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 사운드 분류 시스템의 높은 성능을 확인할 수 있었다.

Impact of Road Traffic Characteristics on Environmental Factors Using IoT Urban Big Data (IoT 도시빅데이터를 활용한 도로교통특성과 유해환경요인 간 영향관계 분석)

  • Park, Byeong hun;Yoo, Dayoung;Park, Dongjoo;Hong, Jungyeol
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.130-145
    • /
    • 2021
  • As part of the Smart Seoul policy, the importance of using big urban data is being highlighted. Furthermore interest in the impact of transportation-related urban environmental factors such as PM10 and noise on citizen's quality of life is steadily increasing. This study established the integrated DB by matching IoT big data with transportation data, including traffic volume and speed in the microscopic Spatio-temporal scope. This data analyzed the impact of a spatial unit in the road-effect zone on environmental risk level. In addition, spatial units with similar characteristics of road traffic and environmental factors were clustered. The results of this study can provide the basis for systematically establishing environmental risk management of urban spatial units such as PM10 or PM2.5 hot-spot and noise hot-spot.

Analysis of the differences in living population changes and regional responses by COVID-19 outbreak in Seoul (코로나-19에 따른 서울시 생활인구 변화와 동별 반응 차이 분석)

  • Jin, Juhae;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.6
    • /
    • pp.697-712
    • /
    • 2020
  • New infectious diseases have broken out repeatedly across the world over the last 20 years; COVID-19 is causing drastic changes and damage to daily lives. Furthermore, as there is no denying that new epidemics will appear in the future, there is a continuous need to develop measures aimed towards responding to economic damage. Against this backdrop, the living population is an important indicator that shows changes in citizens' life patterns. This study analyzes time-based and socio-environmental characteristics by detecting and classifying changes in everyday life caused by COVID-19 from the perspective of the floating population. k-shape Clustering is used to classify living population data of each of the 424 dong's in Seoul measured by the hour; then by applying intervention analysis and One-way ANOVA, each cluster's characteristics and aspects of change in the living population occurring in the aftermath of COVID-19 are scrutinized. In conclusion, this study confirms each cluster's obvious characteristics in changes of population flows before and after the confirmation of coronavirus patients and distinguishes groups that reacted sensitively to the intervention times on the basis of COVID-related incidents from those that did not.