• Title/Summary/Keyword: 시계열 도표

Search Result 4, Processing Time 0.016 seconds

A Case Study on Crime Prediction using Time Series Models (시계열 모형을 이용한 범죄예측 사례연구)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.139-169
    • /
    • 2012
  • The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.

  • PDF

A systematic review of studies using time series analysis of health and welfare in Korea (체계적 문헌고찰을 통한 국내 보건복지 분야의 시계열 분석 연구 동향)

  • Woo, Kyung-Sook;Shin, Young-Jeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.579-599
    • /
    • 2014
  • The purpose of this study was to identify the trends and risk of bias of research using time series analysis on health and welfare in Korea and to suggest a direction for future health and welfare research. The database searches identified 6,543 papers. Following the process for screening and selecting, a total of 91 papers were included in the systematic review. There has been a steady increase in the number of articles using time series analysis from 1987 to 2013. Time series analysis was applied in medicine and health science journals. The main goals were explanation and description. Most of the subjects were heath status and utilization of healthcare services. The main model used in the time series analysis was ARIMA followed by time series regression. The data were gathered from various sources, including the national statistical office and government agencies. For assessing risk of bias, some studies were found to have inadequate sample sizes or showed no time series graphs and plots. These findings suggest greater widespread utilization of time series analysis in the field of health and welfare and to use the appropriate analysis methods and statistical procedures to obtain more reliable results to improve the quality of research.

Analysis of Highway Traffic Indices Using Internet Search Data (검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구)

  • Ryu, Ingon;Lee, Jaeyoung;Park, Gyeong Chul;Choi, Keechoo;Hwang, Jun-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.14-28
    • /
    • 2015
  • Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.

Visualizing Korean economic statistics (우리나라 경제통계 시각화의 현황과 과제)

  • Lee, Geung-Hee
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1313-1325
    • /
    • 2017
  • Economic statistics such as GDP, consumer prices, balance of payments, and unemployment rates are regularly measured over time. One of the best way to understand economic statistics is to visualize economic statistics as a picture. This makes it easier to grasp patterns of economic statistics and to communicate with users. The web technologies and the visualization tools make it possible to create dynamic and interactive visualization of economic statistics. Statistics Korea and the Bank of Korea provide various data visualization relating to official statistics such as infographics and dynamic charts. This paper presents an overview of visualization of Statistics Korea and the Bank of Korea. It also discusses a future direction to explore the visualization of Korean economic statistics.