• 제목/요약/키워드: 시계열분석방법

검색결과 803건 처리시간 0.027초

이분산 시계열 모형에서 모수의 변화에 대한 모니터링 절차의 점근 성질 (Asymptotic properties of monitoring procedure for parameter change in heteroscedastic time series models)

  • 김수택;오해준
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.467-482
    • /
    • 2020
  • 본 논문은 이분산성을 갖는 위치-척도 시계열 모형에서 모수의 변화에 대한 모니터링 절차를 연구한다. 모니터링 절차에서 수정된 잔차의 누적합을 이용한 탐지기를 소개하고 귀무가설과 대립가설 하에서 각각 모니터링 절차에 대한 점근적 성질을 규명한다. 그리고 모의실험과 사례 분석을 통하여 제안한 모니터링 방법의 성능이 우수함을 확인한다.

시계열 예측을 위한 퍼지 학습 알고리즘 (Fuzzy Learning Algorithms for Time Series Prediction)

  • 김인택;공창욱
    • 한국지능시스템학회논문지
    • /
    • 제7권3호
    • /
    • pp.34-42
    • /
    • 1997
  • 본 논문은 새로은 퍼지 규칙의 생성을 위한 학습 알고리즘과 시계열 예측에의 응용을 다루고 있다. 데이터에서 IF-THEN문 형태의 퍼지 규칙을 생성시키는 과정에서 동일한 전건부(IF문)에 대해 상이한 후건부(THEN문)가 생겨 모순된 규칙을 형성시키는 경향이 있다. 수정된 중심값 방법(Modified Center Method)으로 명명된 새로운 알고리즘은 이와 같은 모순된 규칙의 형성을 효과적으로 해결하여, 시계열 예측을 수행하는데 그 오차를 줄일 수 있다. 알고리즘의 효과를 살표보기 위해 Mackey-Glass time series와 Gas Furnace data 분석에 적용하였다.

  • PDF

시계열 데이터베이스에서 임의 계수의 이동평균 변환을 지원하는 서브시퀀스 매칭 알고리즘 (A Subsequence Matching Algorithm Supporting Moving Average Transformation of Arbitrary Order in Time-Series Databases)

  • 노웅기;김상욱;황규영;심규석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (1)
    • /
    • pp.334-336
    • /
    • 1999
  • 본 논문에서는 시계열 데이터베이스에서 임의 계수의 이동평균 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 응용분야와 분석하려고 하는 시계열 데이터의 특성에 따라 잡음의 영향을 줄이는 정도와 경향을 파악하는 주기가 달라지므로 이동평균 계수의 선택도 달라진다. 본 논문에서는 하나의 이동평균 계수에 대해서 생성한 인덱스만을 이용하여 인덱스가 생성되어 있지 않은 계수에 대해서도 탐색을 수행하는 방법을 제안한다. 이때, 제안된 탐색 기법이 질의 결과로 반환되어야 할 서브시퀀스를 모두 찾아내지 못하는 착오 기각이 발생하지 않음을 증명한다. 실험 결과, 모든 이동평균 계수에 대해 인덱스가 생성되어 있는 경우와 비교하여 탐색 성능의 저하는 42%이내였으며, 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 초대 2.7배 우수하였다.

  • PDF

시계열모형을 이용한 선거개입의 경제적 영향분석 (Analysis of the Economic Effects of General Elections in Korea : Intervention Analysis)

  • 최성관
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권2호
    • /
    • pp.257-267
    • /
    • 2000
  • 이 연구의 목적은 '우리나라의 경우 선거시기를 전후하여 정부여당이 선거에서의 승리를 목적으로 주기적으로 경제문제에 개입하여왔는가?' 라는 질문에 대해 통계자료에 근거하여 답해 보려는 것이다. 이러한 연구목적을 효과적으로 달성하기 위해 여러 접근방법 중 단순하면서도 절약적인 방법으로 알려진 ARIMA-Intervention모형을 이용하였다.

  • PDF

시계열데이터의 모델기반 클러스터 결정 (Determining on Model-based Clusters of Time Series Data)

  • 전진호;이계성
    • 한국콘텐츠학회논문지
    • /
    • 제7권6호
    • /
    • pp.22-30
    • /
    • 2007
  • 대부분의 실세계의 시스템들, 즉 경제, 주식시장, 의료분야 등의 많은 시스템들은 동적이며 복잡한 현상을 갖는다. 이러한 특징들의 시스템을 이해하는 전형적인 방법은 시스템행위에 대한 모델을 세우고 분석하는 것이다. 본 연구에서는 실세계의 동적 시스템에서 발생되는 시계열데이터들에 대하여 최적의 클러스터를 형성하기 위한 방법을 연구한다. 먼저 클러스터 수를 결정하는 기준으로 베이지안정보기준(BIC : Bayesian Information Criterion)근사법의 활용도를 검증하고 데이터 크기와 베이지안정보기준값의 상관관계를 파악함으로 탐색 효율을 높이는 방안을 제안하며 클러스터링 과정으로 모델기반과 유사기반의 방법론을 비교 확인하여 본다. 실제의 시계열데이터(주가)에 대해 실험을 시행하였고 베이지안정보기준 근사 측도는 데이터의 크기에 따라 파티션의 사이즈를 정확히 추정하는 것을 확인하였으며 또한 유사기반의 방식보다 모델기반의 방법론이 클러스터링에서 더 나은 결과를 갖는 것을 확인하였다.

이동 평균 기반 동적 시간 와핑 기법을 이용한 시계열 키워드 데이터의 분류 성능 개선 방안 (Enhancing Classification Performance of Temporal Keyword Data by Using Moving Average-based Dynamic Time Warping Method)

  • 정도헌
    • 정보관리학회지
    • /
    • 제36권4호
    • /
    • pp.83-105
    • /
    • 2019
  • 본 연구는 시계열 특성을 갖는 데이터의 패턴 유사도 비교를 통해 유사 추세를 보이는 키워드를 자동 분류하기 위한 효과적인 방법을 제안하는 것을 목표로 한다. 이를 위해 대량의 웹 뉴스 기사를 수집하고 키워드를 추출한 후 120개 구간을 갖는 시계열 데이터를 생성하였다. 제안한 모델의 성능 평가를 위한 테스트 셋을 구축하기 위해, 440개의 주요 키워드를 8종의 추세 유형에 따라 수작업으로 범주를 부여하였다. 본 연구에서는 시계열 분석에 널리 활용되는 동적 시간 와핑(DTW) 기법을 기반으로, 추세의 경향성을 잘 보여주는 이동평균(MA) 기법을 DTW에 추가 적용한 응용 모델인 MA-DTW를 제안하였다, 자동 분류 성능 평가를 위해 k-최근접 이웃(kNN) 알고리즘을 적용한 결과, ED와 DTW가 각각 마이크로 평균 F1 기준 48.2%와 66.6%의 최고 점수를 보인 데 비해, 제안 모델은 최고 74.3%의 식별 성능을 보여주었다. 종합 성능 평가를 통해 측정된 모든 지표에서, 제안 모델이 기존의 ED와 DTW에 비해 우수한 성능을 보임을 확인하였다.

자기회귀모형에서의 로버스트한 모수 추정방법들에 관한 연구 (A Comparison of Robust Parameter Estimations for Autoregressive Models)

  • 강희정;김순영
    • Journal of the Korean Data and Information Science Society
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 2000
  • 본 논문에서는 가장 많이 사용되는 시계열 모형중의 하나인 자기회귀모형에서 모수를 추정하는 방법으로 최소 절대 편차 추정법(least absolute deviation estimation)을 포함한 로버스트한 추정방법 (robust estimation)의 사용을 제안하고 모의 실험을 통하여 이러한 방법들을 기존의 최소 제곱 추정 방법과 예측의 관점에서 비교 검토하여 시계열 자료분석에서의 로버스트한 모수 추정 방법의 유효성을 확인해 보고자 한다.

  • PDF

평활된 주기도를 이용한 강수량자료의 군집화 (Classification of Precipitation Data Based on Smoothed Periodogram)

  • 박만식;김희영
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.547-560
    • /
    • 2008
  • 스펙트럼 밀도함수(spectral density function)는 시계열 자료가 정상성(stationarity)을 만족하는 경우에 주파수 영역(frrqllrnFr domain)에서 시계열 자료의 자기공분산함수(auto-covariance function)을 결정짓는 함수이고, 평활된 주기도(smoothed periodogram)는 스펙트럼 밀도함수의 일치 추정량(consistent estimator)이 됨이 잘 알려져 있다. 본 연구에서는 시계열 자료를 평활된 주기도를 이용하여 군집화하는 방법을 소개한다. 최근 김희영과 박만식 (2007)의 연구에 의하면 이 거리는 정상시계열들을 효율적으로 분류하고 있음을 알 수 있다. 본 연구는 시계열 자료를 분류하는데 사용된 기존의 거리들을 간략히 소개하고, 우리나라 22개 지역에서 1987년 1월부터 2007년 12월까지 측정한 월별 강수량 자료를 대상으로 평활된 주기도 거리를 이용하여 지역을 군집화한다.

코어비저항 측정에 미치는 영향요소에 대한 실험적 고찰(Ⅱ) - 시계열자료의 특성과 대표비저항 값의 결정 (Experimental Verification on Factors Affecting Core Resistivity Measurements (II)-Characteristics of Time Series Data and Determination Method of Resistivity)

  • 김영화;최예권
    • 지구물리
    • /
    • 제2권4호
    • /
    • pp.269-276
    • /
    • 1999
  • 암석의 코어비저항 값을 올바르게 결정하기 위한 노력의 일환으로 비저항 측정에 있어서 샘플홀더의 영향을 분석하고 시계열자료로부터 암석의 비저항을 대표할 수 있는 비저항 값을 효과적으로 구하는 방안에 관하여 연구하였다. 샘플홀더에 대한 연구로는 기존의 GS식과 2전극식 방법과 함께 코어시료 표면을 전도성 접착제로 처리한 변형 GS식 및 변형 2전극식을 고안하여 각 특성을 비교하였으며 그 중에서 변형 2전극식이 측정자료의 안정성과 측정의 편이성 측면에서 장점이 있는 것으로 확인되었다. 샘플홀더 및 사용 소스 주파수의 차이에 따라 달리 나타나는 시계열자료의 분포특성에 관한 분석 결과는 최대곡률점을 이용하여 암석의 대표비저항을 결정하는 방법이 효과적임을 보이고 있다.

  • PDF

시계열분석과 인공신경망을 이용한 실시간검색어 변화 예측 (Predicting changes of realtime search words using time series analysis and artificial neural networks)

  • 정민영
    • 디지털융복합연구
    • /
    • 제15권12호
    • /
    • pp.333-340
    • /
    • 2017
  • 실시간검색어는 지금 바로 이슈가 되는 검색어의 검색 증가율이 단기간에 급상승하는 것을 중심으로 하기 때문에 일정기간 지속적으로 관심도를 유지하고 있는 이슈를 나타내지 못하고 이들이 가까운 미래에 어떤 변화를 보이는지에 대한 것도 알 수 없는 한계를 가지고 있다. 본 논문에서는 이러한 한계를 극복할 수 있도록 일정기간 동안 상위 10위 안에 속한 적이 있는 실시간검색어에 대해 일자별, 시간별 지속성을 평가하여 꾸준히 관심을 받는 검색어를 추출한다. 그런 다음, 이들 중 상위에 속하는 검색어의 관심도가 어떻게 변화하는지를 알 수 있게 하는 시계열 분석과 신경망을 이용하는 방법을 제시하고 이를 통해 도출한 실제 예를 통해 가까운 미래의 변화량을 예측한 결과를 보인다. 일자별로는 시계열 분석을, 시간별로는 인공신경망의 학습을 통해 예측하는 것이 좋은 결과를 보인다는 것을 알 수 있다.