본 논문에서는 주가예측의 정확도를 향상시키기 위하여 공적분 검정(Cointegration Tests)과 인공 신경망(Artificial Neural Networks)을 사용한 2단계 하이브리드 예측 모델을 제시한다. 기존의 연구에서는 예측을 시도하고자 하는 종목의 일자별 개별 레코드를 인공 신경망과 같은 방법으로 학습함으로써 주식 데이터가 가지는 시계열적 특성을 충분히 반영하지 못하였는데, 새로 제안한 모형에서는 주식자료의 과거시차들의 값들도 인공 신경망의 속성(feature)으로 사용하여 기존 연구의 한계를 보완하였다. 또한, 예측대상종목의 정보들 외에도 장기적으로 높은 시계열 유사성을 보유한 종목들을 선발한 후 속성으로 사용하여 모형의 예측성능을 향상 시켰다. 구체적으로 1단계는 Johansen의 공적분 검정을 통하여 예측대상종목과 장기적 관계(long-term relationship)에 있는 종목을 추출하고, 2단계는 이 선발된 종목들과 예측대상종목의 시계열 정보 특성을 속성으로 구축한 인공 신경망으로 학습하여 관심 종목을 예측한다. 제안된 모델의 성능을 확인하기 위하여 KOSPI 지수의 방향성을 예측하는 시스템을 구현하였으며, 시가총액 상위 종목군을 대상으로 지수와의 공적분 검정을 하였다. 성능을 살펴보기 위하여 본 연구에서는 시계열 정보가 속성으로 반영된 단순 인공 신경망 모델, 공적분 검정을 통과한 종목들의 시계열 속성이 포함된 모델, 그리고 그 모델과 속성의 개수를 동일하게 하기 위하여 임의로 종목을 선택하여 이들의 시계열 속성이 포함된 모델을 구축하였다. 실험 결과 공적분 검정을 통과한 종목군의 속성이 결합된 모델은 단순 인공 신경망만으로 학습된 기존 모델에 비하여 평균적으로는 11.29% (최대 29.98%) 정확도가 향상되었고, 임의로 선택된 종목군의 속성이 결합된 모델에 비해서는 평균적으로는 10.59% (최대 25.78%) 가 향상된 예측 정확도를 보여주었다.
본 연구는 시계열 특성을 갖는 데이터의 패턴 유사도 비교를 통해 유사 추세를 보이는 키워드를 자동 분류하기 위한 효과적인 방법을 제안하는 것을 목표로 한다. 이를 위해 대량의 웹 뉴스 기사를 수집하고 키워드를 추출한 후 120개 구간을 갖는 시계열 데이터를 생성하였다. 제안한 모델의 성능 평가를 위한 테스트 셋을 구축하기 위해, 440개의 주요 키워드를 8종의 추세 유형에 따라 수작업으로 범주를 부여하였다. 본 연구에서는 시계열 분석에 널리 활용되는 동적 시간 와핑(DTW) 기법을 기반으로, 추세의 경향성을 잘 보여주는 이동평균(MA) 기법을 DTW에 추가 적용한 응용 모델인 MA-DTW를 제안하였다, 자동 분류 성능 평가를 위해 k-최근접 이웃(kNN) 알고리즘을 적용한 결과, ED와 DTW가 각각 마이크로 평균 F1 기준 48.2%와 66.6%의 최고 점수를 보인 데 비해, 제안 모델은 최고 74.3%의 식별 성능을 보여주었다. 종합 성능 평가를 통해 측정된 모든 지표에서, 제안 모델이 기존의 ED와 DTW에 비해 우수한 성능을 보임을 확인하였다.
본 논문에서는 음성 플랫폼 보안 데이터 전송률을 개선하기 위해 음성 품질에 영향을 주는 지터(Jitter)를 감소시키기 위한 디지터 알고리즘에 대해서 분석하고, 디지터 알고리즘의 성능 향상을 위해서 시계열 모델을 연구하여, 디지터 알고리즘의 한 종류인 입출력 방식 디지터 알고리즘에 시계열 모델을 적용하기 위해서 모형을 적용하는 과정, 설계과정을 제안하고, 구현 및 성능 측정을 통해서 음성 품질이 향상된 결과를 보여준다.
시계열 데이터 모델링은 시간 간격의 길이에 따라 단기적인 패턴이 주로 반영된다. 특히, 모델에 마코프 가정을 적용하였을 경우 이전 시간의 값에 따라 현재값이 결정된다. 시계열 데이터의 장기적인 변화를 다루기 위해, 특정 길이의 순차적 패턴을 부호화 하고, 이를 상위 모델의 입력으로 사용하는 과정을 통해 추상화를 시도하고자 한다. 실제로 사람의 감각기억은 200~500 밀리초 가량의 짧은 기억 유지기간을 갖는데, 이 기간의 정보를 상위 처리기의 입력 단위로 보고자 하는 것이다. 이에 본 고에서는 에너지기반 모델링 기법을 이용하여 반복적으로 나타나는 순차적 패턴을 부호화 하는 방법을 제안한다. 이 부호화 방법은 시간 순서에 따른 패턴의 유사도를 이용하여 확률적으로 다음 패턴과의 관계를 표현할 수 있으며, 이는 향후 시계열 데이터를 간략하게 표현하여 분석 및 시각화에 도움을 줄 수 있다.
최근 카메라 영상을 이용한 제스처 인식 관련 연구가 활발히 진행되고 있다. 카메라 영상을 이용한 제스처 인식에서 많이 사용되는 학습 알고리즘에는 확률 그래프 모델인 HMM과 CRF 등이 있다. 이 학습 알고리즘들은 다차원의 연속된 실수 데이터를 가지고 모델을 학습하면 계산량이 많아진다. 본 논문에서는 팔 관절 위치 데이터를 k-평균 군집화 과정을 거쳐 1차원의 시계열 데이터로 변환 후, 제스처별로 HMM 모델을 학습하는 방법을 제안한다. 키넥트 센서를 통해 얻은 팔 관절 위치 데이터에 k-평균 군집화를 적용하여 1차원 시계열 데이터를 생성하고, 이를 HMM의 학습 및 인식에 사용한다. 본 논문에서 제안하는 방법의 성능을 분석하기 위하여, 다른 시계열 학습 알고리즘인 AP+DTW를 이용한 방법과의 비교 실험을 포함해 다양한 실험들을 수행하였다.
주식 가격이나 경제 지표, 사회적 현상의 추세나 변화 등은 통상 시간에 따라 변화하기 때문에 시계열 자료로 구분된다. 시계열 자료는 시간 축에 대해 변화하는 자료의 표현 가치뿐 아니라 그 변화 추세나 향후 방향성까지 제시할 수 있다는 점에서 이에 대한 방법론에 대해 많은 연구와 노력이 지속되어 왔다. 본 논문에서는 전통적으로 예측 모형을 구축하여 예측하는 방법을 취하되 그 모형이 복잡하고 정교한 모델을 활용하여 예측 정확도를 높이려는 시도와는 달리 자료 클러스터링 방법과 자료 구간 선정을 통해 예측정확도를 높이려 시도하였다. 기본 모델은 마코프 모델이다. 구간별 유사 구간을 추출하여 모델링하는 구간별 모델링 방법과 클러스터링을 통한 그룹별 모델링을 통해 모델의 예측정확도를 개선하려 시도하였다. 실험을 통해 클러스터링을 거친 그룹별 마코프 모델이 정확도를 개선 시켰으나 예측율은 현저히 떨어지는 결과를 낳았다.
본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.
본 논문에서는 소형어선의 운동 응답을 예측하기 위해 딥러닝 모델을 구축하였다. 크기가 다른 두 소형어선을 대상으로 유체동역학 성능을 평가하여 데이터세트를 확보하였다. 딥러닝 모델은 순환 신경망 기법의 하나인 장단기 메모리 기법(LSTM, Long Short-Term Memory)을 사용하였다. 딥러닝 모델의 입력 데이터는 6 자유도 운동 및 파고의 시계열 데이터를 사용하였으며, 출력 라벨로는 6 자유도 운동의 시계열 데이터로 선정하였다. 최적 LSTM 모델 구축을 위해 hyperparameter 및 입력창 길이의 영향을 평가하였다. 구축된 LSTM 모델을 통해 입사파 방향에 따른 시계열 운동 응답을 예측하였다. 예측된 시계열 운동 응답은 해석 결과와 전반적으로 잘 일치함을 확인할 수 있었다. 시계열의 길이가 길어짐에 따라서 예측값과 해석 결과의 차이가 발생하는데, 이는 장기 데이터에 따른 훈련 영향도가 감소 됨에 따라 나타난 것으로 확인할 수 있다. 전체 예측 데이터의 오차는 약 85% 이상의 데이터가 10% 이내의 오차를 보였으며, 소형어선의 시계열 운동 응답을 잘 예측함을 확인하였다. 구축된 LSTM 모델은 소형어선의 모니터링 및 경보 시스템에 활용될 수 있을 것으로 기대한다.
인공신경망을 시계열예측에 적용하는 경우에 고려되어야 할 문제중, 특히 모형에 적합한 입력변수의 생성이 중요시되고 있는데, 이러한 분야는 인공신경망의 모형생성과정에서 입력변수에 대한 전처리기법으로써 다양하게 제시되어 왔다. 가장 최근의 입력변수 전처리기법으로써 제시되고 있는 신호처리기법은 전통적 주기분할처리방법인 푸리에변환기법(Fourier transforms)을 비롯하여 이를 확장시킨 개념인 웨이블릿변환기법(wavelet transforms) 등으로 대별될 수 있다. 이는 기본적으로 시계열이 다수의 주기(cycle)들로 구성된 상이한 시계열들의 집합이라는 가정에서 출발하고 있다. 전통적으로 이러한 시계열은 전기 또는 전자공학에서 주파수영역분할, 즉 고주파 및 저주파수를 분할하기 위한 기법에 적용되어 왔다. 그러나, 최근에는 이러한 연구가 다양한 분야에 활발하게 응용되기 시작하였으며, 그 중의 대표적인 예가 바로 경영분야의 재무시계열에 대한 분석이다 전통적으로 재무시계열은 장, 단기의사결정을 가진 시장참여자들간의 거래특성이 시계열에 각기 달리 가격으로 반영되기 때문에 이러한 상이한 집단들의 고유한 거래움직임으로 말미암아 예를 들어, 주식시장이 프랙탈구조를 가지고 있다고 보기도 한다. 이처럼 재무시계열은 다양한 사회현상의 집합체라고 볼 수 있으며, 그만큼 예측모형을 구축하는데 어려움이 따른다. 본 연구는 이러한 시계열의 주기적 특성에 기반을 둔 신호처리분석으로서 기존의 시계열로부터 노이즈를 줄여 주면서 보다 의미 있는 정보로 변환시켜 줄 수 있는 웨이블릿분석 방법론을 새로운 필터링기법으로 사용하여 현재 많은 연구가 진행되고 있는 인공신경망과의 모형결합을 통해 기존연구와는 다른 새로운 통합예측방법론을 제시하고자 한다. 본 연구에서 제시하는 통합방법론은 크게 2단계 과정을 거쳐 예측모형으로 완성이 된다. 즉, 1차 모형단계에서 원시 재무시계열은 먼저 웨이블릿분석을 통해서 노이즈가 필터링 되는 동시에, 과거 재무시계열의 프랙탈 구조, 즉 비선형적인 움직임을 보다 잘 반영시켜 주는 다차원 주기요소를 가지는 시계열로 분해, 생성되며, 이렇게 주기에 따라 장단기로 분할된 시계열들은 2차 모형단계에서 신경망의 새로운 입력변수로서 사용되어 최종적인 인공 신경망모델을 구축하는 데 반영된다.
본 논문은 일별 및 주별로 시계열 주가를 예측할 수 있는 퍼지 모델을 구성하는 방법을 제안한다. 전통적인 시계열 분석으로 주가를 예측하는 것은 어렵지만 퍼지 모델은 비선형적인 주가 데이터의 특성을 잘 기술할 수 있는 장점을 갖고 있다. 주가 예측 모델에 사용될 입력 정보를 결정하는 데는 상당한 수고가 필요한데, 본 논문에서는 전통적인 캔들 스틱 차트의 정보를 입력변수로 고려한다. 주가 예측 퍼지 모델은 사다리꼴 멤버쉽함수를 갖는 전건부와 비선형식인 후건부로 된 퍼지 규칙으로 구성된다. 차분 진화를 통해 퍼지 모델은 최적화된다. 일별 및 주별로 코스피 지수의 시가, 고가, 저가 및 종가를 예측하는 모델을 만들고 그 성능을 평가한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.