• 제목/요약/키워드: 시계열모델

Search Result 775, Processing Time 0.031 seconds

Learning model management platform based on hash function considering for integration from different timeseries data (서로 다른 시계열 데이터들간 통합 활용을 고려한 해시 함수 기반 학습 모델 관리 플랫폼)

  • Yu, Miseon;Moon, Jaewon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.45-48
    • /
    • 2022
  • IoT 기술의 발전 및 확산으로 다양한 도메인에서 서로 다른 특성의 시계열 데이터가 수집되고 있다. 이에 따라 단일 목적으로 수집된 시계열 데이터만 아니라, 다른 목적으로 수집된 시계열 데이터들 또한 통합하여 분석활용하려는 수요 또한 높아지고 있다. 본 논문은 파편화된 시계열 데이터들을 선택하여 통합한 후 딥러닝 모델을 생성하고 활용할 수 있는 해시함수 기반 학습 모델 관리 플랫폼을 설계하고 구현하였다. 특정되지 않은 데이터들을 기반하여 모델을 학습하고 활용할 경우 생성 모델이 개별적으로 어떤 데이터로 어떻게 생성되었는지 기술되어야 향후 활용에 용이하다. 특히 시계열 데이터의 경우 학습 데이터의 시간 정보에 의존적일 수밖에 없으므로 해당 정보의 관리도 필요하다. 본 논문에서는 이러한 문제를 해결하기 위해 해시 함수를 이용해서 생성된 모델을 계층적으로 저장하여 원하는 모델을 쉽게 검색하고 활용할 수 있도록 하였다.

  • PDF

Multi-horizon Time Series Forecasting Using Temporal Fusion Transformer (Temporal Fusion Transformer 모델을 활용한 다층 수평 시계열 데이터 분석)

  • Kim, Inkyung;Kim, Daehee;Lee, Jaekoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.05a
    • /
    • pp.479-482
    • /
    • 2021
  • 시계열 형태의 데이터는 다양한 분야에서 수집되고 응용되기 때문에 정확한 시계열 예측은 많은 분야에서 운영 효율성을 높일 수 있는 중요한 분석 방법으로 고려된다. 그중 다층 수평 예측은 사용자에게 전반적인 시계열 데이터 경향성을 제공할 수 있다. 하지만 다양한 정보를 포함하는 시계열 데이터는 데이터에 내재한 이질성(heterogeneity)까지 포괄적으로 고려한 방법을 통해서만 정확한 예측을 할 수 있다. 하지만 지금까지 많은 시계열 분석 모델들이 데이터의 이질성을 반영하지 못했다. 이러한 한계를 보완하고자 우리는 Temporal Fusion Transformer 모델을 사용하여 실생활과 밀접한 관련이 있는 데이터에 적용하여 이질성을 고려한 향상된 예측을 수행하였다. 실제, 주식 데이터와 미세 먼지 데이터와 같은 실생활 시계열 데이터에 적용하였고 실험 결과 기존 모델보다 Mean Squared Error(MSE)가 0.3487 낮은 것을 확인하였다.

Model Parameter Based Fault Detection for Time-series Data (시계열을 따르는 공정데이터의 모델 모수기반 이상탐지)

  • Park, Si-Jeo;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.67-79
    • /
    • 2011
  • The statistical process control (SPC) assumes that observations follow the particular statistical distribution and they are independent to each other. However, the time-series data do not always follow the particular distribution, and most of cases are autocorrelated, therefore, it has limit to adopt the general SPC in tim series process. In this study, we propose a MPBC (Model Parameter Based Control-chart) method for fault detection in time-series processes. The MPBC builds up the process as a time-series model, and it can determine the faults by detecting changes parameters in the model. The process we analyze in the study assumes that the data follow the ARMA (p,q) model. The MPBC estimates model parameters using RLS (Recursive Least Square), and $K^2$-control chart is used for detecting out-of control process. The results of simulations support the idea that our proposed method performs better in time-series process.

Time Series Prediction by Combining Evolutionary Neural Trees (진화 신경트리의 결합에 의한 시계열 예측)

  • 정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.342-344
    • /
    • 1999
  • 신경트리(evolutionary neural trees)는 트리 구조의 신경망 모델로서 진화 알고리즘으로 학습하기에 적합한 구조이다. 본 연구에서는 진화 신경트리를 시계열 예측에 적용하였다. 시계열 데이터는 대개 잡음이 포함되어 있으며 동역학적인 특성을 지닌다. 본 논문에서는 견고한 예측 결과를 획득하기 위해 한 개의 신경트리가 아닌 여러개의 신경트리를 결합하여 예측 모델을 구성하는 committee machine을 소개한다. 출력 패턴가에 correlation이 최소가 되도록 상이한 신경트리를 선택하여 결합함으로써 모델 결합 효과를 최대화하는 방법을 사용하였다. 인공적인 잡음을 포함한 시계열 예측 문제와 실세계 데이터에 대한 실험에서 예측에 대한 정확도가 단일 모델을 사용한 경우 보다 향상되었다.

  • PDF

Prediction of Etch Endpoint Using Time-Series Neural Network (시계열 신경망을 이용한 식각 종말점 예측)

  • Park, Min-Geun;Kim, Byung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.325-326
    • /
    • 2007
  • Auto-Cross 시계열 신경망을 이용하여 식각 종말점을 예측하는 모델을 개발하였다. 식각 종말점 신호는 광방사분광기 (OES)를 이용하여 수집하였다. 기준 신호에 대한 예측모델을 개발한 후, 나머지 신호들로 테스트해 그 결과를 비교 분석하였다. 시계열 예측모델은 실제 신호가 제공하지 못하는 EEP 시간대를 제공하였다. 실제신호와 시계열 예측 모델을 병행해 운용할 경우 EEP 탐지 성능의 증진이 기대된다.

  • PDF

Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting (러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.

BIM Based Time-series Cost Model for Building Projects: Focusing on Construction Material Prices (BIM 기반의 설계단계 원가예측 시계열모델 -자재가격을 중심으로-)

  • Hwang, Sung-Joo;Park, Moon-Seo;Lee, Hyun-Soo;Kim, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • High-rise buildings have recently increased over the residential, commercial and office facilities, thus an understanding of construction cost for high-rise building projects has been a fundamental issue due to enormous construction cost as well as unpredictable market conditions and fluctuations in the rate of inflation by long-term construction periods of high-rise projects. Especially, recent violent fluctuations of construction material prices add to problems in construction cost forecasting. This research, therefore, develops a time-series model with the Box-Jenkins methodologies and material prices time-series data in Korea in order to forecast future trends of unit prices of required materials. BIM (Building Information Modeling) approaches are also used to analyze injection time of construction resources and to conduct quantity takeoff so that total material price can be forecasted. Comparative analysis of Predictability of tentative ARIMA (Autoregressive Integrated Moving Average) models was conducted to determine optimal time-series model for forecasting future price trends. Proposed BIM based time series forecasting model can help to deal with sudden changes in economic conditions by estimating future material prices.

Fusion of Multi-Scale Features towards Improving Accuracy of Long-Term Time Series Forecasting (다중 스케일 특징 융합을 통한 트랜스포머 기반 장기 시계열 예측 정확도 향상 기법)

  • Min, Heesu;Chae, Dong-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.539-540
    • /
    • 2022
  • 본 논문에서는 정확한 장기 시계열 예측을 위해 시계열 데이터의 다양한 스케일 (시간 규모)에서 표현을 학습하는 트랜스포머 모델을 제안한다. 제안하는 모델은 시계열의 다중 스케일 특징을 추출하고, 이를 트랜스포머에 반영하여 예측 시계열을 생성하는 구조로 되어 있다. 스케일 정규화 과정을 통해 시계열의 전역적 및 지역적인 시간 정보를 효율적으로 융합하여 종속성을 학습한다. 3 가지의 다변량 시계열 데이터를 이용한 실험을 통해 제안하는 방법의 우수성을 보인다.

Time Series Analysis of Wind Pressures Acting on a Structure (구조물에 작용하는 풍압력의 시계열 분석)

  • 정승환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.4
    • /
    • pp.405-415
    • /
    • 2000
  • Time series of wind-induced pressure on a structure are modeled using autoregressive moving average (ARMA) model. In an AR process, the current value of the time series is expressed in terms of a finite, linear combination of the previous values and a white noise. In a MA process, the value of the time series is linearly dependent on a finite number of the previous white noises. The ARMA process is a combination of the AR and MA processes. In this paper, the ARMA models with several different combinations of the AR and MA orders are fitted to the wind-induced pressure time series, and the procedure to select the most appropriate ARMA model to represent the data is described. The maximum likelihood method is used to estimate the model parameters, and the AICC model selection criterion is employed in the optimization of the model order, which is assumed to be a measure of the temporal complexity of the pressure time series. The goodness of fit of the model is examined using the LBP test. It is shown that AR processes adequately fit wind pressure time series.

  • PDF

Time Series Perturbation Modeling Algorithm : Combination of Genetic Programming and Quantum Mechanical Perturbation Theory (시계열 섭동 모델링 알고리즘 : 운전자 프로그래밍과 양자역학 섭동이론의 통합)

  • Lee, Geum-Yong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.277-286
    • /
    • 2002
  • Genetic programming (GP) has been combined with quantum mechanical perturbation theory to make a new algorithm to construct mathematical models and perform predictions for chaotic time series from real world. Procedural similarities between time series modeling and perturbation theory to solve quantum mechanical wave equations are discussed, and the exemplary GP approach for implementing them is proposed. The approach is based on multiple populations and uses orthogonal functions for GP function set. GP is applied to original time series to get the first mathematical model. Numerical values of the model are subtracted from the original time series data to form a residual time series which is again subject to GP modeling procedure. The process is repeated until predetermined terminating conditions are met. The algorithm has been successfully applied to construct highly effective mathematical models for many real world chaotic time series. Comparisons with other methodologies and topics for further study are also introduced.