• Title/Summary/Keyword: 시간 영역 계산

Search Result 1,141, Processing Time 0.032 seconds

Parallel Computing Strategies for High-Speed Impact into Ceramic/Metal Plates (세라믹/금속판재의 고속충돌 파괴 유한요소 병렬 해석기법)

  • Moon, Ji-Joong;Kim, Seung-Jo;Lee, Min-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.527-532
    • /
    • 2009
  • In this paper simulations for the impact into ceramics and/or metal materials have been discussed. To model discrete nature for fracture and damage of brittle materials, we implemented cohesive-law fracture model with a node separation algorithm for the tensile failure and Mohr-Coulomb model for the compressive loading. The drawback of this scheme is that it requires a heavy computational time. This is because new nodes are generated continuously whenever a new crack surface is created. In order to reduce the amount of calculation, parallelization with MPI library has been implemented. For the high-speed impact problems, the mesh configuration and contact calculation changes continuously as time step advances and it causes unbalance of computational load of each processor. Dynamic load balancing technique which re-allocates the loading dynamically is used to achieve good parallel performance. Some impact problems have been simulated and the parallel performance and accuracy of the solutions are discussed.

Kinematic Wave Rainfall-Runoff Model Using CUDA FORTRAN (CUDA FORTRAN을 이용한 운동파 강우유출모형)

  • Kim, Boram;Kim, Dae-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.271-271
    • /
    • 2018
  • 그래픽 처리 장치(GPU: Graphic Processing Units)는 그래픽 처리에 특화된 수많은 산술논리연산자 (ALU: Arithmetic Logic Unit)와 이에 관련된 인스트럭션Instruction)으로 인해 중앙 처리 장치(CPU: Central Processing Units) 보다 훨씬 빠른 계산 처리를 수행할 수 있다. 최근에는 FORTRAN에 의해 구현된 많은 수치모형들이 현실적인 모델링 방법의 발달로 인해 더 많은 계산량과 계산시간을 필요로 한다. 이 연구에서는 GPU 상의 범용 계산GPGPU : General-Purpose computing on Graphics Processing Units) 기반 운동파 강우유출모형(Kinematic Wave Rainfall-Runoff Model)이 CUDA(Compute Unified Device Architecture) FORTRAN을 사용하여 구현되었다. CUDA FORTRAN 운동파 강우유출모형의 계산 결과는 검증된 CPU 기반 운동파 강우유출모형의 계산 결과와 비교하여 검증되었으며, 잘 일치함을 보여 주었다. CUDA FORTRAN 운동파 강우유출모형은 CPU 기반 모형에 비해 약 20 배 더 빠른 계산 시간을 보였다. 또한 계산 영역이 커짐에 따라 CPU 버전에 비해 CUDA FORTRAN 버전의 계산 효율이 향상되었다.

  • PDF

A Study on Frontal Face Detection Using Wavelet Transform (Wavelet 변환을 이용한 정면 얼굴 검출에 관한 연구)

  • Rhee Sang-Brum;Choi Young-Kyoo
    • Journal of Internet Computing and Services
    • /
    • v.5 no.1
    • /
    • pp.59-66
    • /
    • 2004
  • Symmetry region searching can extract face region without a prior information in an image by using symmetric. However, this method requires a plenty of the computation time because the mask size to process symmetry region searching must be larger than the size of object such as eye, nose and mouth in face. in this paper, it proposed symmetric by using symmetry region searching and Wavelet Transform to reduce computation time of symmetry region searching, and It was applied to this method in an original image. To extract exact face region, we also experimented face region searching by using domain division in extraction region.

  • PDF

Reduction Method based on Sub-domain Structure using Reduced Pseudo Inverse Method (축소 의사역행렬과 영역분할 기반 축소모델 구축 기법 연구)

  • Kim, Hyun-Gi;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.139-145
    • /
    • 2009
  • Reduction scheme is remarkably useful in the case requiring the repeated calculation procedure. Recently, the efficiency of the reduction scheme has been improved by combining scheme of sub-domain method. But, when the global domain is partitioned into a few sub-domains, sub-domains without constraints can be produced. it is needed to extract the ritz vector from each sub-domain to construct the reduced system of each sub-domain. it is easy to extract the ritz vector from sub-domain with constraint. on the other hand, pseudo inverse method should be employed to extract the ritz vector from sub-domain without constraint. generally, the pseudo inverse takes a large number of computing time to obtain a reduced system of a sub-domain without boundary condition. This trouble can be overcome by the reduced pseudo inverse scheme which proposed in this study. This scheme is based on the static condensation that is not related with selection of the primary degrees of freedom. Numerical examples demonstrate that present method saves computational cost effectively and predicts the accurate eigenvalues.

  • PDF

Study on the Multi-Zone Furnace Analysis Method for Power Plant Boiler (발전용 보일러에 대한 다중영역분할 화로해석 기법의 활용성 연구)

  • Baek, SeHyun;kim, Donggyu;Lee, Jang Ho
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.427-432
    • /
    • 2020
  • In this study, a multi-zone furnace analysis method that couples a 1D energy and mass balance calculation with a 3D radiative heat transfer calculation is tested in order to verify its reliability. The calculated results for a domestic 500 MW capacity coal-fired boiler furnace were compared with the design data of the boiler manufacturer and CFD analysis, and a good agreement was achieved. Although this calculation method is less sophisticated than the CFD furnace analysis, it has an advantage in terms of calculation time while being able to provide the furnace behavior according to the fuel characteristics and operational variable changes. Therefore, it is expected to be useful for boiler operation diagnosis and daily fuel/operation planning.

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.

Analysis of false alarm possibility using simulation of back-scattering signals from water masses (수괴 산란신호 모의를 통한 오탐 가능성 분석)

  • Ha, Yonghoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.99-108
    • /
    • 2021
  • In this paper numerical wave propagation experiments have been performed to visually confirm whether the signals scattered by water masses can be a false alarm in active sonar. The numerical environments consist of exaggerated water masses as targets in free space. Using a pseudospectral time-domain model for irregular boundary, the back-scattered signals have been calculated and compared with analytic solutions. Also, the sound propagation was simulated. Consequently, it was verified that water masses themselves could not be detected as a false target.

3-D Sound Source Localization using Energy-Based Region Selection and TDOA (에너지 기반 영역 선택과 TDOA에 의한 3차원 음원 위치 추정)

  • Yiwere, Mariam;Rhee, Eun Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.294-300
    • /
    • 2017
  • This paper proposes a method for 3-D sound source localization (SSL) using region selection and TDOA. 3-D SSL involves the estimation of an azimuth angle and an elevation angle. With the aim of reducing the computation time, we compare signal energies to select one out of three regions. In the selected region, we compute only one TDOA value for the azimuth angle estimation. Also, to estimate the vertical angle, we choose the higher energy signal from the selected region and pair it up with the elevated microphone's signal for TDOA computation and elevation angle estimation. Our experimental results show that the proposed method achieves average error values of $0.778^{\circ}$ in azimuth and $1.296^{\circ}$ in elevation, which is similar to other methods. The method uses one energy comparison and two TDOA computations therefore, the total processing time is reduced.

Identification of Model Parameters by Sequential Prediction Error Method (순차적 예측오차 방법에 의한 구조물의 모우드 계수 추정)

  • 윤정방;이창근
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.143-148
    • /
    • 1990
  • The modal parameter estimations of linear multi-degree-of-freedom structural dynamic systems are carried out in time domain. For this purpose, the equation of motion is transformed into the auto regressive and moving average model with auxiliary stochastic input(ARMAX) model. The parameters of the ARMAX model are estimated by using the sequential prediction error method. Then the modal parameters of the system are obtained thereafter. Experimental results are given for a 3-story budding model subject to ground exitations.

  • PDF

Motion adaptive do-interlacing using the weighted summation of the spatial/temporal information (시간 및 공간 정보의 가중합산을 이용한 움직임에 적응적인 디인터레이싱)

  • 변승찬;변정문;김경환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.568-570
    • /
    • 2003
  • 비월주사(interlaced)에서 순차주사(progressive)로의 변환을 디인터레이싱(de-interlacing)이라 한다. 제안하는 방식은 움직임 검출을 통해 움직임이 없는 영역에서는 앞선 필드정보를 이용하여 별도의 계산량 없이 디인터레이싱을 하게 되며, 움직임이 있는 영역에서는 공간정보(spatial information)를 이용하여 디인터레이싱하는 ELA(Edge based line average) 방식과 양방향 움직임 추정(bi-directional motion estimation)을 통한 시간정보(temporal information)를 이용하여 디인터레이싱하는 움직임 보상방법 간의 가중합산(weighted summation)을 이용하여 디인터레이싱을 수행하는 방법을 제안한다. 이 때 가중치(weight)는 공간 및 시간 정보 모두를 사용하여 결정되어지며, 이렇게 결정되어진 가중치를 통해 각 방식의 단점을 극복하게 된다. 이러한 가중합산을 이용한 방법은 높은 계산복잡도 없이 단순한 구현을 통해 다양한 조건에서 높은 성능의 디인터레이싱이 가능토록 해주며, 그 하드웨어 구현을 용이하게 해준다.

  • PDF