• Title/Summary/Keyword: 시간전달행렬법

Search Result 13, Processing Time 0.018 seconds

Color Correction Method of CIS Digital Camera for Mobile Phone (휴대폰용 CIS 디지털 카메라의 컬러 보정법)

  • Kim Eun-Su;Jang Soo-Wook;Lee Sung-Hak;Han Chan-Ho;Jung Tae-Young;Sohng Kyu-Ik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.4 s.310
    • /
    • pp.9-18
    • /
    • 2006
  • In the digital camera system, CMOS image sensor (CIS) is widely used because its size and weight become smaller and power consumption becomes lower. However, there are common problems that colors of the recorded image do not match those of the photographed object and that spectral sensitivity of the CIS used in different cameras varies largely in each case. Therefore, color correction is needed because the spectral sensitivity of the CIS in each color is neither the same color component for most standard colors nor the appropriate color representation for any output devices. In the conventional method, a color correction is empirically obtained by a large number of iterative experiments, but the result is not so satisfied. In this paper, a new method to obtain the efficient color correction matrix for digital camera using CIS is proposed. We obtain camera transfer matrix under the certain white-balance point, and color correction matrix that makes the transfer characteristic of digital camera close to the transfer characteristic of ideal camera is obtained. The experimental results show that the transfer characteristic of digital camera by the proposed method is close to that of the ideal camera. In addition, the image quality of pictures of digital camera using the proposed method is dramatically improved.

Direct Design Sensitivity Analysis of Frequency Response Function Using Krylov Subspace Based Model Order Reduction (Krylov 부공간 모델차수축소법을 이용한 주파수응답함수의 직접 설계민감도 해석)

  • Han, Jeong-Sam
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2010
  • In this paper a frequency response analysis using Krylov subspace-based model reduction and its design sensitivity analysis with respect to design variables are presented. Since the frequency response and its design sensitivity information are necessary for a gradient-based optimization, problems of high computational cost and resource may occur in the case that frequency response of a large sized finite element model is involved in the optimization iterations. In the suggested method model order reduction of finite element models are used to calculate both frequency response and frequency response sensitivity, therefore one can maximize the speed of numerical computation for the frequency response and its design sensitivity. As numerical examples, a semi-monocoque shell and an array-type $4{\times}4$ MEMS resonator are adopted to show the accuracy and efficiency of the suggested approach in calculating the FRF and its design sensitivity. The frequency response sensitivity through the model reduction shows a great time reduction in numerical computation and a good agreement with that from the initial full finite element model.

A Study on Dynamic Behaviour of Cable-Stayed Bridge by Vehicle Load (차량하중에 의한 사장교의 동적거동에 관한 연구)

  • Park, Cheun Hyek;Han, Jai Ik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1299-1308
    • /
    • 1994
  • This paper is considered on the dynamic behavior and the dynamic impact coefficient on the cable-stayed bridge under the vehicle load. The method of static analysis, that is, the transfer matrix method is used to get influence values about displacements, section forces of girder and cable forces. Gotten influence values were used as basic data to analyse dynamic behavior. This paper used the transfer matrix method because it is relatively simpler than the finite element method, and calculating speed of computer is very fast and the precision of computation is high. In the process of dynamic analysis, the uncoupled equation of motion is derived from simultaneous equation of the motion of cable-stayed bridge and vehicle travelling by using mode shape, which was borne from system of undamped free vibration. The solution of the uncoupled equation of motion, that is, time history of response of deflections, velocity and acceleration on reference coordinate system, is found by Newmark-${\beta}$ method, a kind of direct integral method. After the time history of dynamic response was gotten, and it was transfered to the time history of dynamic response of cable-stayed bridge by linear transformation of coordinates. As a result of this numerical analysis, effect of dynamic behavior for cable-stayed bridge under the vehicle load has varied depending on parameter of design, that is, the ratio of span, the ratio of main span length, tower height, the flexural rigidity of longitudinal girder, the flexural rigidity of tower, and the cable stiffness, investigated. Very good agreements with the existing solution in the literature are shown for the uncracked plate as well as the cracked plate.

  • PDF