효소는 생명 현상을 구현하는 단백질 촉매인데 그 동안 효소의 촉매 반응 속도는 Michaelis-Menten(MM) 모델로 대부분 설명되어 왔다. 그러나 MM 모델은 실험으로 측정된 단일 효소 반응시간의 확률분포 모양을 설명할 수 없다. MM 모델에 반응계수의 정적 무질서 개념을 도입한 효소 반응 모델도 기질 농도에 따라 변화하는 효소 반응시간의 통계적 요동을 설명하지 못한다. 우리는 단일 효소 반응시간의 통계적 요동이 기질에 따라 변화하는 양상을 설명하기 위해 효소 반응을 구성하는 개별 화학반응을 단순히 푸아송 과정이 아닌 갱신과정(renewal process)으로 확장한 효소 반응 모델을 제안한다. 우리는 이 단일 효소 반응 모델과 기질에 따른 효소 반응시간 분산 변화 데이터를 비교하여 효소-기질 복합체의 지속시간 분포를 간단한 형태로 얻어내었다. 또한, 이 정보를 토대로 전산모사를 수행하여 효소 반응시간의 확률분포를 얻어내고, 실제 실험 결과 및 기존 이론들과 비교하였다. 뿐만 아니라 단일 효소 반응시간의 확률분포를 연속 시간 임의의 보행자(continuous time random walker)의 대기시간 확률분포(waiting time distribution)로 대응하면, 평균 제곱 변위가 시간에 따라 단순히 증가 하지 않는 고분자의 특이 수송(anomalous diffusion) 현상도 정량적으로 설명할 수 있었다.
본 연구는 운전자 연령대와 뇌손상 여부에 따라 다양한 반응시간 과제에서의 반응시간과 반응정확성에서 어떠한 차별성이 있는지 살펴볼 목적으로 수행되었다. 이를 위해 30-50대의 중년운전자, 65세 고령운전자, 그리고 65세 이상의 뇌졸중 고령운전자들을 대상으로 단순반응, 2-선택반응, 자극 이심률을 달리한 4-선택반응, 탐색반응 및 동적자극 탐지 과제에 대한 수행을 비교하였다. 본 연구의 결과를 정리하면 다음과 같다. 첫째, 전반적으로 중년, 고령 및 뇌졸중 고령운전자 순으로 느린 반응시간을 보였으나 자극 이심률이 작은 조건($5^{\circ}$)에 비해 큰 조건($10^{\circ}$)에서 뇌졸중 고령운전자의 반응시간이 다른 집단에 비해 더 두드러지게 지연되었다. 둘째, 전체 반응시간에서 단순 반응시간을 감산한 반응시간을 분석한 결과, 2-선택반응 과제와 동적자극 탐지과제에서의 집단간 반응시간 차이는 유의하지 않았는데, 이것은 이러한 과제들에서의 반응시간 차이가 단순 반응시간에 의해 주로 결정된다는 것을 시사한다. 셋째, 일시적 기억을 요구하는 탐색과제에서는 두 고령운전자 집단이 중년운전자 집단에 비해 유의하게 느리고 부정확한 수행을 보였다. 넷째, 집단간 반응정확성에서의 차이는 선택 대안이 많은 과제와 기억을 요구하는 과제에서 두드러졌다. 이러한 결과는 기억 요구를 수반하는 탐색과제는 중년과 고령운전자 사이의 수행을, 반면 자극 이심률 조건은 뇌졸중 여부에 따른 고령운전자 집단에서의 수행 차이를 민감하게 반영할 수 있음을 시사한다.
저항범위가 다른 두종류의 Ru계 후막저항계(1Kohm/sq. 100kohm/sq.)를 선택하여 도전상의 상전이 기구를 반응조건을 변화시켜 연구하였다. 저저항체의 경우 도전상으로는 RuO2였으며 700-100$0^{\circ}C$에서 1시간 반응한 경우 반응온도에 따른 구성상의 변화는 없었다 반응온도 90$0^{\circ}C$에서 반응시간이 경과함에 따라 도전상은 RuO2가 Glass의 구성성분인 Pb와 반응하여 Rb2(Ru1.69 Pb0.31)O6.5로 변하고 시간이 36시간 경과한 후에는 도전상이 Pb4Al2Si2O10인 결정으로 둘러 쌓이는 반응인 peritectic reaction이 일어났다. 고전항체의 경 우 도전상으로는 Pb2(Ru1.69 Pb0.31)O6.5로 변하고 시간이 36시간 경과한 후에는 더전상이 Pb4Al2Si2O10인 결정으로 둘러쌓이는 반응인 peritectic reaction 이 일어났다. 고저항체의 경 우 도전상으로는 Pb2(Ru1.69 Pb0.31)O6.5인 pyrochrole 상이였다. 100$0^{\circ}C$에서 1시간 반응시킬 경 우 도전상이 RuO2로 변하였다. 반응온도를 90$0^{\circ}C$로 하고 반응시간을 변화시키면 도전상인 Pb2(Ru1.69 Pb0.31)O6.5가 (Ru1.69Pb0.31)O4x로 변하면서 공존하였다.
본 논문에서는, 혼잡 망에서의 큐 제어 방식과 전송 지연 시간에 대한 웹 반응 시간을 분석하였다. FIFO 방식에서는, 웹 반응 시간이 큐 크기에 대해서 거의 일정한 성능을 보여주었으나, 트래픽 부하가 높아질수록 웹 반응 시간은 길어졌다. 80%의 트래픽 부하보다, 90%와 98%의 트래픽 부하일 경우에, 큐 크기가 달라짐에 따라 웹 반응 시간이 더 뚜렷하게 다르게 나타났다. 특히 전송 지연 시간이 짧을 경우, 웹 반응 시간의 차이가 더욱 뚜렷하게 나타났다. RED 방식에서는, 상대적으로 큰 큐 크기일 경우, 3가지 서로 다른 설정의 RED 방식이 웹 반응 시간에 뚜렷한 영향을 미치지 못하였다. 큐 크기가 작아졌을 경우, 짧은 전송 지연에 대하여 각 RED 방식의 웹 반응 시간이 서로 뚜렷하게 다르게 나타났다. FIFO와 RED의 비교에서, 긴 전송 지연 시간일 경우, RED 방식이 FIFO보다 작은 웹 반응 시간을 보여주었다.
본 연구에서는 운전장면 개별요소들에 대한 중년 및 고령운전자의 작업기억의 특성을 반응민감도, 반응편파 및 반응시간을 통해 비교하였다. 본 연구의 결과를 요약하면 다음과 같다. 첫째, 고령운전자 집단은 중년운전자 집단에 비해 민감도가 낮았고 특히 중년운전자 집단의 경우는 중심자극과 주변자극에 대한 민감도에서의 차이가 유의하지 않았던 반면, 고령운전자 집단의 경우는 중심자극에 비해 주변자극에 대한 민감도가 현저하게 더 낮았다. 둘째, 중년운전자 집단은 전반적으로 보수적으로 반응한 반면 고령운전자 집단은 대체적으로 관대한 방향으로 반응하는 경향이 상대적으로 더 컸다. 셋째, 중년운전자들에 비해 고령운전자들의 반응시간이 더 느렸고, 중심자극보다는 주변자극에 대한 반응시간이 더 느렸으며, 반응의 유형에 따라서는 적중의 반응시간이 가장 빨랐던 반면 헛경보의 반응시간이 가장 느렸다. 특히, 탈루과 정기각 반응에 대해서는 두 집단 사이의 반응시간 차이가 더 증가하였다. 이러한 결과는 중년운전자들에 비해 고령운전자들은 운전장면 개별요소에 대한 작업기억에서의 파지가 상대적으로 더 불완전하고, 이에 따라 작업기억에 기초한 신속한 판단에서 어려움이 증가할 수 있음을 시사한다.
대부분의 인지적 과제에서 관찰되는 반응시간 자료의 분포는 정적으로 편포되어 나타남에도 불구하고, 반응시간을 종속측정치로 하는 대다수의 연구들은 표본 평균에 근거한 집중경향치 분석에 의존한다. 본 연구에서는 반응시간 자료의 분포특성에 분석의 초점을 맞추어 실험적 처치의 효과를 구체적으로 추론하는 방법을 소개하였다. 평균 반응시간의 변화는 그 분포상 가우시안 및 지수 분포가 혼합된 형태로 나타난다고 가정할 수 있으며, 최대우도 추정법에 근거한 ex-Gaussian 모형 검증을 통해 반응시간 분포 특성을 수치화된 파라미터로 산출하고 확률밀도함수를 구현할 수 있다. 분석 사례를 위해 두 가지 고전적 시각탐색과제에서 얻어진 반응시간 자료를 사용하였으며, ex-Gaussian 함수를 통해 탐색배열의 항목개수의 증가가 초래하는 평균 반응시간의 지연효과에 대한 해석을 시도하였다. 수리적 모형을 통한 반응시간 분포 분석은 고전적 집중경향치 분석의 한계를 넘어 반응시간을 활용한 다양한 이론 및 개인차 연구에서 활용될 수 있을 것으로 기대된다.
본 연구는 원유에서 지방을 제거한 탈지유의 pH를 5.5, 7.0, 8.5로 조정한 다음 TGase를 첨가하여 0, 1, 2, 4, 8시간 반응시킨 다음 단백질 입자들을 동결건조하여 조직의 성상에 대해 주사 전자 현미경을 이용해 관찰, 비교하였다. pH와 TGase를 처리하지 않은 원유의 탈지유는 단백질 입자들이 규칙적으로 회합해 있었다. 그러나 pH 조정 후 TGase를 처리한 다음 반응시간을 달리한 시료에서는 pH를 5.5로 조정한 시료에서 현저한 변화가 있었는데 그 변화 양상은 단백질 입자들이 0시간에서 조각을 이루워 회합되어 있다가 1시간 반응시킨 경우 단백질 입자들이 서로 결합하여 넓게 회합을 하였다. 2시간 반응시킨 경우 단백질 입자들이 다시 뭉쳐서 회합하였으며 4시간 반응시킨 경우 뭉쳐져 있던 단백질 입자들이 조그만한 구형 성상으로 넓게 회합하였다. 8시간 반응시킨 시료는 구형 성상으로 회합되어 있던 단백질 입자들이 사라지면서 다시 넓게 회합하는 것을 관찰할 수 있었다. pH 7.0과 8.5 조건하에서는 단백질 입자들이 조각 형태를 이루고 있었으며 반응시간이 증가할수록 입자들이 넓게 확대되는 현상을 나타냈다. 이와 같은 단백질들의 변화 양상은 pH와 TGase처리 그리고 반응시간에 영향을 받고 있는 것으로 사료된다.
Chalcopyrite 구조를 가진 CuInSe$_2$ (CIS) 나노입자를 유기용매인 diethylamine을 사용하여 autoclave안에서 용매열법(solvothermal method)으로 제조하였다. 180 $^{\circ}C$에서 36시간 반응시켜 길이가 10-30 nm, 폭이 5-10 nm인 rod-Eke 형상을 한 CIS 나노입자를 얻었다. 반응온도를 25$0^{\circ}C$로 증가시키고 동일한 반응시간에서 보다 미세하고 균일한 구형의 CIS 나노입자를 관찰할 수 있었다. 한편, 190 $^{\circ}C$에서 얻어진 CIS 나노입자는 36시간을 반응시킨 경우 구형으로 관찰되었으나 60시간 반응시킨 경우는 길이가 50-100 nm 인 rod-like 입자로 성장하였다. 이와 같이 반응시간과 온도를 달리하여 나노입자의 형상이 바뀌는 것을 입자성장기구의 관점에서 고찰하였다. 반응시간과 온도에 따라 얻어진 CIS 나노 입자들의 결정성, 미세구조 그리고 정량 및 정성분석을 XRD, SEM, TEM, EDS등으로 각각 행하였다.
본 연구는 아동 51명을 대상으로 키보드의 특정버튼(Enter, 숫자키, 방향키), 마우스 포인터, 마우스 오른쪽버튼과 왼쪽 버튼의 조작 시간을 체크하여 각 인터페이스별 조작능력을 살펴보았다. 연구결과, 키보드와 마우스 조작시간에는 월령과 성별에 따른 차이보다는 개인에 따른 편차가 큰 것으로 나타났다. 문항별 반응시간을 비교하였을 때, 키보드버튼조작 평균 반응시간2.97초(5.62), 마우스포인터조작 반응 평균 반응시간 58초(.43), 마우스버튼조작 반응 평균 반응시간 3.02초(1.49)로 나타났다. 각 하위영역별로 조작시간 편차가 큼을 고려할 때, 기본인터페이스 조작능력은 개인에 따라 차이가 나타남을 알 수 있다.
재생 가능한 자원인 동식물성 기름을 원료로 제조되는 수송용 연료 바이오디젤은 낮은 대기오염물질 배출과 $CO_2$ Neutral 특성으로 환경친화적인 연료로 인정을 받으며 전세계적으로 그 생산량이 급격히 증가하고 있다. 대부분의 상용화 공정은 염기촉매를 이용한 전이에스테르화 반응에 근거하고 있으며 높은 생산성을 위해 연속 공정을 채택하고 있다. 원료유 중의 유리지방산(free fatty acid, FFA)은 염기 촉매와 반응하여 지방산염(Soap)과 수분을 생성하며 반응촉매의 투입양을 증가시카고 반응 후에 글리세롤과 지방산 메틸에스테르와의 분리를 어렵게 만든다. 높은 수율과 후속공정의 부하를 줄이기 위해서는 식물성 원료유 중의 FFA는 고체 산촉매 하에서 메탄올과 에스테르화 반응시켜 전환 제거되어야 한다. 본 연구에서는 고체산 촉매인 Amberlyst-15을 충전한 4단 PBR(Packed Bed Reactor, 충전율 60%(v/v))에서 반응시간과 반응온도에 따른 대두원유의 전처리 효율을 조사하였으며 최적 전처리 조건을 도출하였다. 최적 전처리 조건에서 대두원유는 초기 산가 1.6에서 0.4-0.6으로 연속 전처리할 수 있었다. 본 연구에서는 연속 흐름 반응기인 PFR(Plug Flow Reactor)와 4단 CSTR(Continuous Stirred Tank Reactor)에서 균질계 촉매인 KOH 존재하에 대두유와 메탄올과의 전이에스테르화 반응 특성을 조사하였으며 각 연속 반응시스템에서 최적 운전 조건을 도출하였다. PFR 반응기에서 반응온도, 반응시간, 반응물 흐름방향, static mixer(SM) 개수에 따른 반응특성을 조사한 결과, PFR에서의 최적 반응조건은 하향류 흐름 방향과 3개의 SM를 설치한 조건에서 반응시간 5.8분, 반응온도 90$^{\cdot}C$, 메탄올:오일 몰비 9:1, KOH 농도 0.8%로 도출되었다. CSTR 반응기에서는 반응온도와 체류시간에 따른 반응특성을 조사하였으며 최적반응 조건으로 반응온도 80$^{\cdot}C$, 메탄올/오일 몰비 9:1, KOH 농도 0.8%, 체류시간 18.4분, 교반속도 250rpm로 조사되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.