• Title/Summary/Keyword: 시각 동기화 딥러닝

Search Result 1, Processing Time 0.018 seconds

Development of Machine Learning Model to Predict Hydrogen Maser Holdover Time (수소 메이저 홀드오버 시간예측을 위한 머신러닝 모델 개발)

  • Sang Jun Kim;Young Kyu Lee;Joon Hyo Rhee;Juhyun Lee;Gyeong Won Choi;Ju-Ik Oh;Donghui Yu
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.111-115
    • /
    • 2024
  • This study builds a machine learning model optimized for clocks among various techniques in the field of artificial intelligence and applies it to clock stabilization or synchronization technology based on atomic clock noise characteristics. In addition, the possibility of providing stable source clock data is confirmed through the characteristics of machine learning predicted values during holdover of atomic clocks. The proposed machine learning model is evaluated by comparing its performance with the AutoRegressive Integrated Moving Average (ARIMA) model, an existing statistical clock prediction model. From the results of the analysis, the prediction model proposed in this study (MSE: 9.47476) has a lower MSE value than the ARIMA model (MSE: 221.2622), which means that it provides more accurate predictions. The prediction accuracy is based on understanding the complex nature of data that changes over time and how well the model reflects this. The application of a machine learning prediction model can be seen as a way to overcome the limitations of the statistical-based ARIMA model in time series prediction and achieve improved prediction performance.