• Title/Summary/Keyword: 승압기

Search Result 214, Processing Time 0.025 seconds

A Study on Power Conversion System for Fuel Cell Controlled by Micro-Processor (마이크로프로세서에 의해 제어되는 연료전지용 전력변환장치에 관한 연구)

  • Kim, Ju-Yong;Jung, Sang-Hwa;Mun, Sang-Pil;Ryu, Jae-Yup;Suh, Ki-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.5
    • /
    • pp.10-24
    • /
    • 2007
  • In the dissertation, a power conversion system for fuel cell is composed of a PWM inverter with LC filter in order to convert fuel cell voltage to a single phase 220[V]. In addition, new insulated DC-DC converters are proposed in order that fuel cell voltage is boosted to 380[V]. In this paper, it requires smaller components than existing converters, which makes easy control. The proposed DC-DC converter controls output power by the adjustment of phase-shift width using switch $S_5\;and\;S_6$ in the secondary switch which provides 93-97[%] efficiency in the wide range of output voltage. Fuel cell simulator is implemented to show similar output characteristics to actual fuel cell. Appropriate dead time td enables soft switching to the range where the peak value of excitation current in a high frequency transformer is in accordance with current in the primary circuit. Moreover, appropriate setting to serial inductance La reduces communication loss arisen at light-load generator and serge voltage arisen at a secondary switch and serial diode. Finally, TMS320C31 board and EPLD using PWM switching technique to act a single phase full-bridge inverter which is planed to make alternating current suitable for household

A Study on the Design Parameters of the Static Ring in the Ultra-high Voltage Non-uniform Electric Field (초고압 불평등 전계에서 정전링 설계변수에 대한 연구)

  • Kim, Jin-Sung;Seo, Min-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.577-582
    • /
    • 2020
  • Electricity produced at power plants is distributed to consumers through several stages of substations. At this time, an ultra-high voltage transformer is needed in the initial transmission stage to transmit a voltage suitable for each consumer. A high voltage, non-uniform electric field is formed at the end of the winding of the ultra-high voltage transformer, which carries a risk of dielectric breakdown. The winding of the ultra-high voltage transformer is an electrode, which is the key to converting the magnitude of the voltage. A non-uniform electric field is formed along the shape of the winding end, resulting in high electrical stress. The static ring installed at the upper and lower ends of the winding is used to disperse the stress at the winding end. Several variables should be considered when designing a static ring. Among them, this study examined how the curvature of the static ring, the thickness of the insulating paper, the number of barriers, and barrier thickness affect the electrical stress of the static ring using the Finite Element Method. Suggestions to be considered when designing the static ring are proposed through the FEM results.

A Three-phase Current-fed DC-DC Converter with Active Clamp (연료전지용 3상 전류형 능동클램프 DC-DC 컨버터)

  • Cha, Han-Ju;Choi, Jung-Wan;Yoon, Gi-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.456-464
    • /
    • 2007
  • This paper proposes a novel three-phase current-fed active clamp DC-DC converter for fuel cells. A single common active clamp branch is used to limit transient voltage across the three-phase full bridge and to realize zero-voltage switching(ZVS) in all switches. To apply for the power generation system current-fed type has been combined with the three-phase power conversion system. The proposed approach has the following advantages: an increase (by a factor of three) of input current and output voltage chopping frequencies; lower RMS current through the inverter switches with higher power transfer capability; reduction in size of reactive later components and the power conditioning system; better transformer utilization; increase of the system reliability. Therefore, the proposed three-phase current-fed active clamp DC-DC converter is appropriate for the boost type DC-DC converter for fuel cells and also applicable for the photovoltaic and battery charge system. The paper details the analysis, simulation and hardware implementation of the proposed system. Finally, experimental results with the proposed PWM strategy demonstrate the feasibility of the proposed scheme on a 500W prototype converter.

Research on Power Converters for High-Efficient and Light-Weight Auxiliary Power Supplies (APS) in Railway System (철도차량 보조전원장치의 고효율-경량화를 위한 전력변환회로 연구)

  • Lee, Jae-Bum;Cho, In-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.329-338
    • /
    • 2017
  • A recent trend of technical development in auxiliary-power-supplies (APS) is to replace 60Hz low frequency transformers with isolated type dc/dc converters. This paper introduces the technical trend in APS structures and proposes a power converter circuit suitable for high-efficient and light-weight APS. By utilizing the resonant converter, which achieves ZCS, to reduce switching losses, various types of APS structures (1-stage and 2-stage) are reviewed, and they are verified by simulation. The full-bridge resonant LLC converter is designed with a 1-stage power converting structure; the resonant converter topology is designed with a 2-stage power converting structure that has a pre-regulator converter to compensate for the wide input voltage range. Both a step-down converter and a step-up converter are designed and compared for the pre-regulator in the 2-stage structure. Operational characteristics are compared with simulation results and loss analyses are presented to proposes appropriate system structure and topologies.