• Title/Summary/Keyword: 승법모형

Search Result 22, Processing Time 0.026 seconds

A multiplicative unrelated quantitative randomized response model (승법 무관양적속성 확률화응답모형)

  • Lee, Gi-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.897-906
    • /
    • 2016
  • We augment an unrelated quantitative attribute to Bar-Lev et al.'s model (2004) which is composed of sensitive quantitative variable and scrambled one to present a multiplicative unrelated quantitative randomized response model(MUQ RRM). We also establish theoretical grounds to estimate the sensitive quantitative attribute according to circumstances irrespective of known or unknown unrelated quantitative attribute. Finally, we explore the relationship among the suggested model, Eichhorn-Hayre model, Bar-Lev et al.'s model and Gjestvang-Singh's model, and compare the efficiency of our model with Bar-Lev et al.'s model.

A Stratified Mixed Multiplicative Quantitative Randomize Response Model (층화 혼합 승법 양적속성 확률화응답모형)

  • Lee, Gi-Sung;Hong, Ki-Hak;Son, Chang-Kyoon
    • Journal of the Korean Data Analysis Society
    • /
    • v.20 no.6
    • /
    • pp.2895-2905
    • /
    • 2018
  • We present a mixed multiplicative quantitative randomized response model which added a unrelated quantitative attribute and forced answer to the multiplicative model suggested by Bar-Lev et al. (2004). We also try to set up theoretical grounds for estimating sensitive quantitative attribute according to circumstances whether or not the information for unrelated quantitative attribute is known. We also extend it into the stratified mixed multiplicative quantitative randomized response model for stratified population along with two allocation methods, proportional and optimum allocation. We can see that the various quantitative randomized response models such as Eichhorn-Hayre's model (1983), Bar-Lev et al.'s model (2004), Gjestvang-Singh's model (2007) and Lee's model (2016a), are one of the special occasions of the suggested model. Finally, We compare the efficiency of our suggested model with Bar-Lev et al.'s (2004) and see that the bigger the value of $C_z$, the more the efficiency of the suggested model is obtained.

Parameter Estimation in the Multiplicative Models (승법모형의 모수추정)

  • Chang, Suk-Hwan
    • Journal of the Korean Data and Information Science Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • The parameters in the multiplicative model $Y_{1}={\alpha}_{0}{\prod}^{p}_{k=1}X_{kj}^{{\beta}_K}v_{j}$ are usually estimated by the least squares method after logarithmic transformation, and the least square Estimator of ${\alpha}_{0}$ is known to be biased, i.e., $E(e xp(\hat{\beta}_{0})){\neq}{\alpha}_{0})$. In the present study the unbaised estimators of ${\alpha}_{0}$ are examined(1) by modifying the least squares estimator and (2) by applying the Finney's results. The variances are also compared. In addition it has been observed that multiplicative model can be used to express the relationship beetween rice yield and yield components.

  • PDF

패널 승법 계절 시계열 모형의 동질성 검정과 적용

  • 이성덕;김성호;차경엽
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1996
  • 계절성을 갖는 승법 계절 혼합 시계열 모형들의 동질성 검정을 위하여 Wald 검정 통계량을 구하고 그 극한 분포가 ${\chi}^2$-분포함을 보였으며 시뮬레이션 연구를 통하여 뒷받침하였다. 도시 규모가 비슷한 우리나라 지역별 평균 온도자료를 가지고 이 동질성 검정을 수행하여 시계열을 지역별로 모형화하여 예측한 것과 동질성이 있는 것을 묶고 모형화하여 예측한 것에 대한 예측 오차를 비교하였다.

  • PDF

Application of a Statistical Disclosure Control Techniques Based on Multiplicative Noise (승법잡음모형을 이용한 통계적 노출조절기법의 적용)

  • Kim, Young-Won;Kim, Tae-Yeon;Ki, Kye-Nam
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.127-136
    • /
    • 2011
  • Multiplicative noise model is the one of popular method for masking continuous variables. In this paper, we propose the transformation on the variable to which random noise was multiplied. An advantage of the masking method using proposed transformation is that the masking data users can obtain the unbiased values of mean and variance of original (unmasked) data. We also consider the data utility and correlation structure of variables when we apply the proposed multiplicative noise scheme. To investigate the properties of the method of masking based on multiplicative noise, a simulation study has been conducted using the 2008 Householder Income and Expenditure Survey data.

Forecasting the Container Throughput of the Busan Port using a Seasonal Multiplicative ARIMA Model (승법계절 ARIMA 모형에 의한 부산항 컨테이너 물동량 추정과 예측)

  • Yi, Ghae-Deug
    • Journal of Korea Port Economic Association
    • /
    • v.29 no.3
    • /
    • pp.1-23
    • /
    • 2013
  • This paper estimates and forecasts the container throughput of Busan port using the monthly data for years 1992-2011. To do this, this paper uses the several seasonal multiplicative ARIMA models. Among several ARIMA models, the seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$ is selected as the best model by AIC, SC and Hannan-Quin information criteria. According to the forecasting values of the selected seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$, the container throughput of Busan port for 2013-2020 will increase steadily annually, but there will be some volatile variations monthly due to the seasonality and other factors. Thus, to forecast the future container throughput of Busan port and to develop the Busan port efficiently, we need to use and analyze the seasonal multiplicative ARIMA model $(1,0,1){\times}(1,0,1)_{12}$.

The Forecasting of Monthly Runoff using Stocastic Simulation Technique (추계학적 모의발생기법을 이용한 월 유출 예측)

  • An, Sang-Jin;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.2
    • /
    • pp.159-167
    • /
    • 2000
  • The purpose of this study is to estimate the stochastic monthly runoff model for the Kunwi south station of Wi-stream basin in Nakdong river system. This model was based on the theory of Box-Jenkins multiplicative ARlMA and the state-space model to simulate changes of monthly runoff. The forecasting monthly runoff from the pair of estimated effective rainfall and observed value of runoff in the uniform interval was given less standard error then the analysis only by runoff, so this study was more rational forecasting by the use of effective rainfall and runoff. This paper analyzed the records of monthly runoff and effective rainfall, and applied the multiplicative ARlMA model and state-space model. For the P value of V AR(P) model to establish state-space theory, it used Ale value by lag time and VARMA model were established that it was findings to the constituent unit of state-space model using canonical correction coefficients. Therefore this paper confirms that state space model is very significant related with optimization factors of VARMA model.

  • PDF

Forecasting the Seaborne Trade Volume using Intervention Multiplicative Seasonal ARIMA and Artificial Neural Network Model (개입 승법계절 ARIMA와 인공신경망모형을 이용한 해상운송 물동량의 예측)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.31 no.1
    • /
    • pp.69-84
    • /
    • 2015
  • The purpose of this study is to forecast the seaborne trade volume during January 1994 to December 2014 using the multiplicative seasonal autoregressive integrated moving average (ARIMA) along with intervention factors and an artificial neural network (ANN) model. Diagnostic checks of the ARIMA model were conducted using the Ljung-Box Q and Jarque-Bera statistics. All types of ARIMA process satisfied the basic assumption of residuals. The ARIMA(2,1,0) $(1,0,1)_{12}$ model showed the lowest forecast error. In addition, the prediction error of the artificial neural network indicated a level of 5.9% on hidden layer 5, which suggests a relatively accurate forecasts. Furthermore, the ex-ante predicted values based on the ARIMA model and ANN model are presented. The result shows that the seaborne trade volume increases very slowly.

Forecasting the Trading Volumes of Marine Transport and Ports Logistics Policy -Using Multiplicative Seasonal ARIMA Model- (해상운송의 물동량 예측과 항만물류정책 -승법 계절 ARIMA 모형을 이용하여-)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.23 no.1
    • /
    • pp.149-162
    • /
    • 2007
  • The purpose of this study is to forecast the marine trading volumes using multiplicative seasonal Autoregressive Integrated Moving Average(ARIMA) model. The paper proceeds by comparing the forecasting performances of the unload volumes with those of the load volumes with Box-Jenkins ARIMA model. Also, I present the predicted values based on the ARIMA model. The result shows that the trading volumes increase very slowly.

  • PDF

A Study on Demand Forecasting Change of Korea's Imported Wine Market after COVID-19 Pandemic (코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구)

  • Jihyung Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.189-200
    • /
    • 2023
  • At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD $1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023. On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.