• Title/Summary/Keyword: 승객 이명감

Search Result 10, Processing Time 0.024 seconds

A study on the optimum cross-section design that satisfies the criteria of aural discomfort in Honam high speed railway tunnel (이명감 특성을 고려한 호남고속철도 터널단면 설정에 관한 연구)

  • Kim, Seon-Hong;Mun, Yeon-O;Seok, Jin-Ho;Kim, Gi-Rim;Kim, Chan-Dong;Yu, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.19-36
    • /
    • 2007
  • When the trains runs at a high speed in the tunnel, passengers feel a pain in the ear that fast pressure fluctuation inside the tunnel being delivered with pressure fluctuation inside the passenger car. These phenomena are called "aural discomfort". Aural discomfort increase the passengers' uncomfort so that it is decreased a service level and serious case, it is able to damage the ear of the passenger. therefore aural discomfort must be considered the high-speed railroad tunnel cross-section design. To solve the problem of aural discomfort in a railway tunnel, some countries have standards on aural discomfort. It has been studied that different countries have different standards on aural discomfort. For that reason, the criteria of aural discomfort was reviewed through the standards of Kyungbu HSR line and different countries in this paper. And then Numerical Analysis of the Characteristics with tunnel cross-section change has been used for the selection of the optimum cross-section of Honam. The numerical analysis results were compared to field test results in order to verifying the reliability of the numerical analysis.

  • PDF

A STUDY ON THE MINIMUM CROSS-SECTIONAL AREA OF HIGH-SPEED RAILWAY TUNNEL SATISFYING PASSENGER EAR DISCOMFORT CRITERIA (승객 이명감 기준을 만족하는 고속철도 터널 최소 단면적에 대한 연구)

  • Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.62-69
    • /
    • 2015
  • Pressure change inside cabin as well as in tunnel has been calculated to assess the passenger pressure comfort of high-speed train. $C-STA^{TM}$, a CFD program based on axi-symmetric Navier-Stokes equation and Roe's FDS has been used to simulate the pressure change in tunnel during a high-speed train passing through it. To present the relative motion between the train and the tunnel, a modified patched grid scheme based on the structured grid system has been employed. The simulation program has been validated by comparing the simulation results with field measurements. Extensive parametric study has been conducted for various train speed, tunnel cross-sectional area and tunnel length to the pressure change in cabin. KTX-Sancheon(KTX2) high-speed train has been chosen for simulation and the train speed have been varied from 200 km/h to 375 km/h. The tunnel length has been varied from 300 m to 7.5 km and tunnel area from $50m^2$ to $120m^2$. Total 504 simulations have been conducted varying the parameters. Based on the database produced from the parametric simulations, minimum tunnel cross-sectional area has been surveyed for various train speeds based on Korean regulation on pressure change in cabin.

Aerodynamic analysis for train operation without the effect of the passenger ear-discomfort in tunnel of new Seoul-Chunchon line (경춘선 1급 신설터널에서 열차승객의 이명감 없이 주행 가능한 열차속도에 대한 연구)

  • 김동현
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.495-502
    • /
    • 2000
  • For the tunnel design of the first class on new Seoul-Chunchon railway, we investigated for train speeds to run through tunnels without ear-discomfort of passenger in cabin by application of numerical analysis. Also we analyzed the effect of the wind speed induced by train in tunnel that is very harmful to the workers on railroad and the effect of the air-pressure fluctuations which get the fatigue to the tunnel lining and the car body.

  • PDF

A Numerical Study on the Pressure Relief in a Tunnel Using a Pressure Relief Duct (공기 압력 제어 덕트를 이용한 철도 터널 내 공기 압력 저감에 대한 수치해석 연구)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sangpil
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.375-383
    • /
    • 2016
  • High-speed trains have been developed widely in many countries in order to transport a large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. This resistance causes micro pressure wave and discomfort to passengers. Therefore, it is essential to incorporate a pressure relief system in a tunnel and streamlined shape of a train in order to reduce aerodynamic resistance caused by a high-speed train. Additionally, the cross-sectional area of a tunnel should be carefully determined to reduce discomfort of passengers. A pressure relief duct and a vertical shaft are representative measures in a tunnel. This study represents the effect of pressure relief ducts in order to alleviate pressure changes within a time period in a tunnel. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

Study of the Air-tightness Requirement Decisions of GTX Trains (GTX 차량기밀도 요구성능 도출에 관한 연구)

  • Yun, Su-hwan;Cho, Yong-hyeon;Hong, Seok-woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • When a GTX travels through a deep-level underground tunnel at a speed of 180km/h, ear-discomfort in passengers due to the pressure wave generated could be an issue due to the small cross-sectional area. Therefore, appropriate pressure-tightness values for GTX trains must be secured as a countermeasure. In this paper, a 1D numerical analysis was conducted to determine the pressure-tightness coefficient which allows a pressure change meet the criteria. The pressure transients in a tunnel and in a passenger car are predicted considering an A-line underground tunnel with a length of 37km and its operation schedule. The required pressure-tightness of the car is predicted to be three seconds and 6 seconds respectively for a single track and a double- track tunnel to prevent aural discomfort in passengers. The result of this study are expected to serve as useful information to those involved in the development of various solutions to improve air-tightness of GTX passenger cars.

Analysis of Aerodynamic Characteristics for determination of tunnel cross section in Honam high speed railway (호남고속철도 터널 단면선정을 위한 공기역학적 특성 분석)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Jo, Hyeong-Jae;Yoo, Ho-Sik;Choi, Jeong-Hwan;Rim, Hyoung-Gyu
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.313-336
    • /
    • 2007
  • Unlike a conventional railway system, a high-speed rail system experiences various aerodynamic problems in tunnel sections. Trains running at a high speed in a small tunnel, when compared with the open field, face significant air pressure, resulting in reduced operating stability and fast change in pressure inside the tunnel. These phenomena further cause some unexpected problems such as the passengers onboard feeling an aural discomfort and an impulsive noise at the tunnel exit. To solve these problems, this paper introduces analysis of aerodynamic characteristics for determination of tunnel cross section. The optimum cross-section that satisfies the criteria of aural discomfort was reviewed through lots of numerical simulation analysis. Also, the pressure inside the passenger car of a train operating on Kyungbu HSR line was measured, and the pressure inside the tunnel and the micro-pressure waves at tunnel exit were measured at Hwashin 5 Tunnel. At the same time, a test of train operation model was performed and then the measurement results and test results were compared to verify that various parameters used as input conditions for the numerical simulations were appropriate.

  • PDF

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Effect of a Pressure Relief System in a High-speed Railway Tunnel (고속 열차 터널의 공기압력 감소를 위한 압력 제어 시스템)

  • Seo, Sang Yeon;Ha, Heesang;Lee, Sang Pil
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • High-speed trains have been developed widely in many countries in order to transport large quantity of people and commodities rapidly. When a high speed train enters a tunnel, aerodynamic resistance is generated suddenly. The resistance caused from air pressure induces micro pressure wave and discomfort to passengers in a train. Therefore, a pressure relief system should be installed in a tunnel to reduce the resistance acting against the running train in a tunnel. Additionally, the shape of a grain should be streamlined in order to reduce aerodynamic resistance caused by a high-speed train. The cross-section of a tunnel also should be carefully designed to reduce discomfort of passengers. This study represents the effect of pressure relief ducts installed between two running tunnels. The pressure relief duct was integrated with a cross-passage in order to save cost and construction time. One-dimensional network numerical simulations were carried out in order to estimate the effect of pressure relief systems.

A STUDY ON THE AERODYNAMIC EFFECTS WHEN A HIGH-SPEED TRAIN PASSING THROUGH AN UNDERGROUND STATION USING COMPUTATIONAL FLUID DYNAMICS (고속열차의 지하정거장 통과 시 발생하는 공기역학적 영향에 대한 전산유체해석 연구)

  • Lim, K.M.;Kim, Y.M.;Bang, M.S.;Kwon, H.B.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.61-70
    • /
    • 2016
  • Dong-tan Station, shared by high-speed railway and urban express railway, is a very complicated underground station having 6 tracks together with barrier and shafts between them, therefore it seems very hard to investigate the aerodynamic effects including the pressure variation and train gust in the station when a high-speed train runs through it. In this study, the aerodynamic effects on the structures and platform passengers when a high-speed train runs through an underground station have been studied using Computational Fluid Dynamics. STAR-CCM+ has been employed for numerical simulation based on Navier-Stokes equation and 2-equation turbulence model and moving mesh scheme supported by STAR-CCM+ has also been used to represent the relative motion between a train and station. Based on the simulation results, the unsteady flow fields in the underground station induced by the high-speed train have been analyzed and the pressures on the PSDs and pressure variation at the platform have quantitatively assessed.

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.