• Title/Summary/Keyword: 승객 거동 모델

Search Result 17, Processing Time 0.02 seconds

The trend of airbag analysis in automobile crash (자동차 충돌시 에어백의 거동해석의 경향)

  • 임재문;박경진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.14-23
    • /
    • 1995
  • 여기에서는 에어백의 수학적인 모델과 유한요소 모델에 대한 모델링 기법과 이에 대한 발달과정을 간략하게 고찰하고 설계에의 적용 예를 들어, 승객거동해석 시뮬레이션 및 설계를 에어백을 중심으로 서술하고자 한다. 1. 에어백 모델링 발달과정. 2. 에어백의 모델링에 관한 고찰. 3. 승객거동해석 시뮬레이션. 4. 설계의 적용 예. 5. 향후 전망.

  • PDF

Models for occupant protection and vehicle structure in side impect (측면 충돌시 승객보호와 차체해석용 모델)

  • 윤영한
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.6-12
    • /
    • 1992
  • 본 연구는 차체설계시 측면충돌로 인한 승객보호를 어떠한 관점에서 보아야 할 것이며 신법규에 대비하는 세계의 연구동향은 어떠한 지를 알아보았다. 1. 측면충돌 법규시험. 2. 연구동향. 2.1 승객거동 해석모델(Occupant Crash Simulation Model). 2.2 유한요소법 모델. 2.3 강체질량모델(Lumped-mass Model)

  • PDF

Study of Restraint System Computational Model and Occupant Behavior for Vehicle Occupant Protection (자동차 승객보호를 위한 안전장치 해석모델 및 승객거동 연구)

  • Han, Kyeonghee;Shin, Jaeho;Kim, Kyungjin;So, Young Myung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2021
  • Vehicle occupant postures are anticipated to vary more widely during automated driving and to become more significant in terms of the autonomous vehicle safety. Experimental and computational approaches are needed to investigate and evaluate occupant behaviors during automated driving in general. However the validity and effect of such occupant postures are unknown, thus it is necessary to examine occupant behaviors and injury countermeasures for various occupant postures. This study was focused on the development and evaluation of restraint system model for occupant behavior examinations in the first step according to autonomous vehicle occupant safety. The finite element models of dummy and restraint system were set up and simulation results showed overall model performance and safety tolerances of different reclined occupant postures during frontal impact loading.

Occupant Behavior Analysis of Simplified Full Car Model in Consideration of Joint (결합부 강성을 고려한 단순차체모델의 승객거동 해석)

  • 김홍욱;박신희;강신유;한동철;김정원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.220-227
    • /
    • 1998
  • In substitution of beam-nonlinear spring model for real-car, it may have errors due to complicated characteristics of joint and overestimation of joints stiffness. In this research, a method for the joint modeling was suggested by nonlinear static and dynamic analyses of beam and shell joint models and verified by the application of accomplished joint modeling method to simplified full car model. In consequence, modified simplified full car model was improved in local acceleration and rigid wall force. Finally, the frontal crash analyses with the dummy were established and the accelerations of accelerations of head, chest and pelvis had good agreements with those of shell model.

  • PDF

Development of a Model for the Analysis of Occupant Response subjects in Low-Speed Rear-End Collision (저속 후방 추돌에 따른 승객 거동 현상 해석용 모델 개발)

  • 김희석;김영은
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.139-150
    • /
    • 2000
  • Although a number of neck injuries are generated, the data which quantify the kinematic response of the human head and cervical spine in low-speed rear-end automobile collisions is very limited. On this problem, just few in vitro experimental research or some experimental research using dummy on neck injury by rear-end collision was conducted, thus systematic research is requested on full scale injury mechanism. An occupant model for the response of the occupant subject to rear-end collision using commercial dynamics package DADS was developed. Developed model shows more close agreement with the experimental data compared with the MADYMO simulation results for the cases of ${\delta}V=16$ kph in sled test. For the case of ${\delta}V=8$ kph and 33.5 kph with production seat, model also shows its reliable response compared with experimental results using Hybrid III and Hybird III with RID.

  • PDF

Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part I Articulated Rigid Body Model (충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part I 다물체 동력학 모델 개발)

  • 나상진;최형연;이진희
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.277-282
    • /
    • 2004
  • In order to investigate the small female occupant behavior and accompanying injury mechanisms in vehicular trash event, a finite element model of $5^{th}$ percentile female has been developed. The model consists of articulated rigid body, which represents the morphology of small female body, and internal components with anatomical details. Articulated rigid body model serves as a basic platform for joining the detail internal skeletons and organs, while itself can be used for representing the overall kinematics of small female occupant. The modeling details such as anthropometry and finite element structure as well as validation results for the articulated rigid body model are introduced in this paper. The second part of the modeling, i.e. the internal components with anatomical details of small female are presented in subsequent part II of the paper.

Development of a Three Years Old Child Model for the Analysis of Child Occupant Response subjects in Frontal Collision (전방 충돌에 따른 유아 승객 거동을 위한 3세 유아 모델의 개발)

  • Kim, Yeong-Eun;Kim, Hui-Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.21-27
    • /
    • 1999
  • In order to increase our understanding of the injury mechanism in the child occupant, three year old child model was developed using commercial dynamic package DADS. Total 14 segments and 12 joints were used to compose a model in three points belted condition with booster seat. HYGE sled test case was simulated to validate the developed model. Based on the comparison of the model and published test results, the developed model appears to be a resonable representation of the three year old dummy.

  • PDF

A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques (컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가)

  • 윤영한;구정서;이재완
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

A theme about the occupant analysis for automobiles (승객 거동해석의 시뮬레이션에 관하여)

  • 박경진;박영선;정근섭;위인혁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.29-35
    • /
    • 1992
  • 본 연구에서 검토한 바와 같이 컴퓨터 시뮬레이션은 실차실험과 다소의 오차는 있지만 매우 값싼 환경에서 컴퓨터장비에 거의 종속되지 않고 연구가 가능하므로 충돌실험이 고가인 관계로 여러 경우를 시도할 수 없는 경우 즉, 조인트 성격변화, 의자위치, 벨트의 신율 및 체결상태, 에어백의 장착여부 등에 대한 변화가 있을 때에 이미 확립된 모델에 입력데이타를 수정 혹은 추가함으로써 충돌시 반응을 예상할 수 있을 것으로 기대된다. 그러나, 본 연구에서는 비록 우수한 모델링이 확립되었다 할지라도, 차종이나 주변환경이 바뀔때는 다시 모델링을 해야 되는 문제가 남게 되며 이때 필요한 대상차에 대한 입력데이타가 새로이 정의되어야만 한다.

  • PDF

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.