• Title/Summary/Keyword: 습식세정

Search Result 82, Processing Time 0.017 seconds

Direct bonding of Si(100)/Si$_3$N$_4$∥Si (100) wafers using fast linear annealing method (선형열처리를 이용한 Si(100)/Si$_3$N$_4$∥Si (100) 기판쌍의 직접접합)

  • Lee, Young-Min;Song, Oh-Song;Lee, Sang-Hyun
    • Korean Journal of Materials Research
    • /
    • v.11 no.5
    • /
    • pp.427-430
    • /
    • 2001
  • We prepared 10cm-diameter Si(100)/500 $\AA$-Si$_3$N$_4$/Si(100) wafer Pairs adopting 500 $\AA$ -thick Si$_3$N$_4$layer as insulating layer between single crystal Si wafers. Si3N, is superior to conventional SiO$_2$ in insulating. We premated a p-type(100) Si wafer and 500 $\AA$ -thick LPCVD Si$_3$N$_4$∥Si (100) wafer in a class 100 clean room. The cremated wafers are separated in two groups. One group is treated to have hydrophobic surface and the other to have hydrophilic. We employed a FLA(fast linear annealing) bonder to enhance the bond strength of cremated wafers at the scan velocity of 0.1mm/sec with varying the heat input at the range of 400~1125W. We measured bonded area using a infrared camera and bonding strength by the razor blade crack opening method. We used high resolution transmission electron microscopy(HRTEM) to probe cross sectional view of bonded wafers. The bonded area of two groups was about 75%. The bonding strength of samples which have hydrophobic surface increased with heat input up to 1577mJ/$m^2$ However, bonding strength of samples which have hydrophilic surface was above 2000mJ/$m^2$regardless of heat input. The HRTEM results showed that the hydrophilic samples have about 25 $\AA$ -thick SiO layer between Si and Si$_3$N$_4$/Si and that maybe lead to increase of bonding strength.

  • PDF

Deterioration Characteristic Analysis for Stone Properties in the Taereung Royal Tomb of the Joseon Dynasty using Nondestructive Analysis (비파괴 분석을 활용한 조선왕릉 태릉 석조물의 손상특성 분석)

  • Lee, Myeonseong;Choie, Myoungju;Lee, Taejong;Chun, Yungun
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.222-241
    • /
    • 2020
  • The Taereung Royal Tomb from the Joseon Dynasty is the tomb of Empress Munjeong, the second queen of King Jungjong, and it contains various types of stone artifacts. All of these stone artifacts were constructed using coarse- to medium-grained biotite granite. The major types of deterioration of the stone artifacts are identified as surface weathering and biological contaminants. Exfoliation (145 sculptures), granular decomposition (138 sculptures), and repair materials (156 sculptures), along with biological contaminant algae (154 sculptures), lichen (165 sculptures) and moss (97 sculptures), have a high occurrence frequency. In particular, it is deemed that immediate conservation treatment is required, as biological deterioration (algae) represents the most serious condition (grade 3 or higher in 94% of all stones), and it is thought that exfoliation and granulation decomposition are required for long-term conservation management. As a result of equo -tip hardness and ultrasonic measurement, more than 70% of stones were found to have very weak physical properties. Through hyperspectral analysis, organisms were shown to inhabit more than 80% of the surface of burial mound stone artifacts, and P (phosphorus), S (sulfur), Cl (chlorine), and Ca (calcium) were detected in this area. This is because Taereung Royal Tomb has been exposed to the outdoors for hundreds of years and has been weathered by physical, chemical, and biological factors. Therefore, among the stone artifacts in the Taereung Royal Tomb, those with high physical weathering grades are considered to require consolidation to reinforce them physically. Since organisms are highly likely to cause stone damage, they must be removed via dry and wet cleaning. In addition, in order to delay the reoccurrence of organisms following conservation treatment, it is necessary to regularly clean up the soil that has flowed into the burial mound, and to monitor conservation conditions over the long term.