• Title/Summary/Keyword: 습공기 밀도

Search Result 11, Processing Time 0.021 seconds

Moist Air Density Calculation for Air Condition (공기 상태량에 대한 습공기 밀도 계산)

  • Kim, Jong-Woo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.105-111
    • /
    • 2014
  • Generally the lower part of the Earth's atmosphere, which is 20km above the ground, is called "air." The composition of this area is almost consistent consisting of nitrogen, oxygen, and other gases. Air density refers to the mass per unit volume of earth atmosphere. Though air is made of the mixed gases in a constant composition, the water vapor is one of the very changeable components. The density of moist air is lower than the dry one at the same temperature and pressure. As the density varies according to the pressure and temperature, this paper attempts to explore the main factors in the air quantity calculation by examining first the density calculation process according to the air property, and second the relation between the actual and standard air flow.

Design of multi-sensor system for comprehensive indoor air quality monitoring

  • TaeHeon Kim;SungYeup Kim;Yoosin Kim;Min Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.149-158
    • /
    • 2024
  • This study aims to design and develop AirDeep-Room, a multi-sensor system for monitoring air quality in various indoor environments. The system measures CO2, TVOC, particulate matter, temperature, and humidity in real-time. By integrating multiple sensors, AirDeep-Room allows convenient correlation analysis using low data format in real-time. The sensor system was installed in a server room and a classroom. Data analysis showed a negative correlation of -0.24 between temperature and humidity in the server room, and a positive correlation of 0.43 in the classroom, indicating different interactions. A high correlation (r=0.69) between the number of students and concentrations of CO2 and TVOC demonstrated the significant impact of occupancy on air quality. AirDeep-Room effectively manages air quality across various environments and provides essential data for improving air quality in densely populated areas.

Removal of Flooding in a PEM Fuel Cell at Cathode by Flexural Wave (Flexural wave를 이용한 고분자 전해질 연료전지 공기극 내에서의 플러딩 제거)

  • Kim, Kyoung-Rock;Han, Seong-Ho;Ahn, Deuk-Kuen;Choi, Young-Don
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • Water management is an important issue of PEM fuel cell operation. Water is the product of the electrochemical reactions inside fuel cell. If liquid water accumulation becomes excessive in a fuel cell, water columns will clog the gas flow channel. This condition is referred to as flooding. A number of researchers have examined the water removal methods in order to improve the performance. In this paper, a new water removal method that investigates the use of vibro-acoutic methods is presented. Piezo-actuators which are devices to generate the flexural wave are attached at the end of a cathode bipolar plate. Flexural wave is used to impart energy to resting droplets and thus cause movement of the droplets in the direction of the traveling wave.

Performance Change of Gas Turbine with a Evaporation Cooling System in Summer Season (하절기 기화냉각장치 설치에 따른 가스터빈 성능변화)

  • Chung, Hyeon-Jo;Yoo, HoSeon;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2017
  • This study analyzed the change of gas turbine performance with air temperature decrease by the evaporation cooling system in summer season. Gas turbine performance was tested on the condition that ambient temperature is $29{\pm}1^{\circ}C$. As a result, Air temperature at the compressor inlet was decreased by $4.12^{\circ}C$ after the installation of evaporation cooling system. Decreased air temperature followed by increased air density affected gas turbine performance, Which increased compressor pressure ratio by 0.27, improved compressor efficiency of 0.29 %p, improved gas turbine enthalpy drop efficiency of 0.31 %p, improved the gas turbine efficiency by 0.44 %p, improved electric power output by 4,489 kW. On the other side, the influence of the humidity increase and flow resistance increase was negligible.

  • PDF

Experimental Study of Performance of PEMFC Operated in Dead-End Mode (수소극 Dead-End 모드 고분자 전해질 연료전지의 실험적 연구)

  • Ji, Sang-Hoon;Hwang, Yong-Sheen;Choi, Jong-Won;Lee, Dae-Young;Park, Joon-Ho;Jang, Jae-Hyuk;Kim, Min-Soo;Cha, Suk-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.643-648
    • /
    • 2010
  • Portable fuel cells are commonly operated in the dead-end mode because of such as high fuel utilization. However, the performance of such systems deteriorates continuously with an increase in the amount of by-products such as water vapor and nitrogen. In this study, to verify the effect of water vapor on Proton Exchange Membrane Fuel Cells (PEMFCs), constant-load experiments were carried out for a current density of 600 mA/cm2 and a voltage of 0.4 V, respectively. The performance of the cell was more stable under constant voltage conditions than under constant current density conditions. Condensed water accumulated in the anode channel near the cell outlet. The experimental results show how the relative humidity (RH = 0.15, 0.4 and 0.75) of air at the cathode side affect the performance of PEMFCs with dead-end anode. At RH values higher than 0.15, the mean power density increased by up to 51% and the mean purge duration decreased by up to 25% compared to the corresponding initial values.

Measurement of Humidity Distribution in a Proton Exchange Membrane Fuel Cell Using Channel Embedded Humidity Sensors (채널 내장형 습도 센서를 이용한 고분자 전해질 연료전지의 습도분포 측정)

  • Lee, Yongtaek;Yang, Gyung Yull
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • In this study, water distribution inside a proton exchange membrane fuel cell (PEMFC) was measured experimentally. Water distribution is non-uniform because of vigorous chemical reaction and mass transport and has been difficult to measure experimentally. Therefore, much research relied on indirect measuring methods or numerical simulations. In this study, several mini temperature-humidity sensors were installed at the channel for measuring temperature and humidity of the flowing gas throughout the channel. Only one of two electrode channels was humidified externally, and the humidity distribution on the other side was measured, enabling the observation of water transport characteristics under various conditions. Diffusion through the membrane became more vigorous as the temperature of the humidifier rose, but at high current density, electro-osmotic drag became more effective than diffusion.

Measurement of Hydrogen Crossover During PEMFC Operation (고분자전해질 연료전지 구동 중 수소투과도 측정)

  • Jeong, Jaejin;Jeong, Jaehyeun;Kim, Saehoon;Ahn, Byungki;Ko, Jaijoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.412-416
    • /
    • 2015
  • To evaluate the performance and durability of membrane, measurement of hydrogen crossover is needed during PEMFC(Proton Exchange Membrane Fuel Cells) operation. In this work, concentration of hydrogen at cathode was analysed by gas chromatograph during operation suppling with air instead of inert gas into the cathode. The hydrogen permeated through membrane reacted with oxygen at cathode and then the concentration of hydrogen was lower than in case inert gas was supplied. Hydrogen concentration decreased as the flow rate of air increased at cathode. Increase of temperature, humidity and pressure of anode gas enhanced the hydrogen concentration at cathode. The hydrogen concentration was about 5.0 ppm at current density of $120mA/cm^2$ during general PEMFC operation.

Evaluation of Energy Consumption in Heat Treatment of Pine Log (소나무 원목의 열처리 소요 에너지 평가)

  • Eom, Chang-Deuk;Park, Jun-Ho;Han, Yeon Jung;Shin, Sang-Chul;Chung, YoungJin;Jung, Chan-Sik;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.41-48
    • /
    • 2008
  • The required energy for the heat treatment of pine log was evaluated in this study. A proper heat treatment of pine log infected by pinewood nematode (Bursaphelenchus xylophilus) can prevent spreading of the infection by pinewood nematode and make the infected pinewood valuable again. The FAO (Food and Agriculture Organization of the United Nations) heat treatment standard for various types of infected wood for which a heat treatment of the core part of the wood is necessary is 30 minutes at $56^{\circ}C$, taking into account the international standards for phytosanitary measures (ISPM No. 15). In this study, the energy consumption during the heat treatment was separated into two kinds of energy, initial energy for heating kiln drier and to reach set point temperature and relative humidity and the required energy supplementing heat loss. The initial required energy per unit time is greater than that during the treatment. The energy consumption per unit time varied little during the heat treatment. As a result, the set point relative humidity with set dry bulb temperature and density of wood dependent on moisture content are very important factors to change energy consumption in the experiment. The heat treatment at higher temperature and higher humidity levels requires more energy consumption but less treatment time. It is expected that a more effective energy program could be planed for the heat treatment of pine log through this study.

Effect of Air Cleaner on the Occurrence of Mushroom Disease During Cultivation of Pleurotus eryngii (공기정화장치가 큰느타리버섯 병 발생에 미치는 영향)

  • Kim, M.K.;Lee, Y.K.;Seo, G.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.1
    • /
    • pp.135-148
    • /
    • 2019
  • King oyster mushroom(Pleurotus eryngii) is one of the most commercially important mushrooms in Korea. Development of fruit body and disease occurrence are sensitive to environmental conditions such as temperature, humidity, carbon dioxide(CO2) concentration. The purpose of this study was to investigate the changes in the growth environment of king oyster mushroom by installing Airocide, an air purifier for the purpose of improving mushroom cultivation environment. The results of the environment conditions, identification of pathogenic organisms and pathogenesis during the cultivation were as follows. Airocide operation increased the CO2 concentration of the cultivation room by more than 400 ppm on average, but the increase of CO2 concentration at this level had little effect on the quality and growth of fruit body. Operation of the Airocide tended to reduce the air humidity of the cultivation room and required more humidification. In humidifying conditions, the Airocide has the effect of lowering the species and density of bacteria and reducing bacterial symptoms and abnormal fruiting body of mushroom. Pseudomonas sp., the mushroom pathogen, was isolated from the cultivation room without Airocide, resulting in serious disease and loss of yields, so that only about 83% of substrate could harvest normal fruiting bodies. No disease symptom caused by bacteria and fungi in the cultivation room with Airocide. Trichoderma sp., Penicillium sp. and Cladosporium sp. were isolated from all experimental conditions, but did not inhibit fruit growth or caused diseased.

Coolant Leak Effect on Polymer Electrolyte Membrane Fuel Cell (고분자전해질연료전지의 냉각수 누설에 대한 연구)

  • Song, Hyun-Do;Kang, Jung-Tak;Kim, Jun-Bom
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of polymer electrolyte membrane fuel cell could be decreased due to coolant leaked from connection part. Micro pump was used to put small amount of coolant and investigate the effect on fuel cell. The stoichiometric ratio of hydrogen/air was 1.5/2.0, both side of gas was fully humidified, and current density of $400mA/cm^2$ was used as standard condition in this experiment. Constant current method was used to check performance recovery from coolant effect in 3 cell stack. The performance was recovered when coolant was injected in cathode side. On the other hand, the performance was not recovered when coolant was injected in anode side. Ethylene glycol could be converted to CO in oxidation process and cause poisoning effect on platinum catalyst or be adhered on GDL and cause gas diffusion block effect resulting performance decrease. Water with nitrogen gas was supplied in anode side to check performance recovery. Polarization curve, cyclic voltammetry, electrochemical impedance spectroscopy was used to check performance, and gas chromatography was used to check coolant concentration. Constant current method was not enough in full recovery of performance. However, water injection method was proved good method in full recovery of performance.