• Title/Summary/Keyword: 슬러리아이스

Search Result 62, Processing Time 0.024 seconds

A Study on the Heat Transfer Characteristics of Ice Slurry Generator with Scraper (스크레이퍼형 아이스슬러리 제빙기의 열전달 특성 연구)

  • Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Park, Il-Hwan;Cho, Hyoug-Seok;An, Seong-Kuk
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.1974-1979
    • /
    • 2007
  • In this study, Ice slurry generator heat transfer characteristics are experimentally investigated for the ice slurry generating system with scraper which is pneumatically operated. The ice slurry generator has the same shape as the vertical double tube type heat exchanger. Refrigerant is flowing in the outside tube and ethylene glycol solution in the inside tube. Refrigerant and solution water are parallel flow type which entering bottom of generator and leaving top of generator. The experimentations are conducted under the various test conditions such as compressor speed and cooling water temperature. For the above experimental conditions, heat transfer characteristics of the ice slurry generating system are evaluated in terms of the overall heat transfer coefficient and the heat transfer rate. And the experimental results show that the heat transfer rate of the system is increased as the compressor speed increases and the cooling water temperature decreases.

  • PDF

A Real Time Measurement of Ice Concentration of Ice Slurry in Pipe (배관내 흐르는 아이스슬러리의 실시간 얼음분율 측정)

  • Jung, Hae-Won;Peck, Jong-Hyeon;Kim, Yong-Chan;Kang, Chae-Dong;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.599-606
    • /
    • 2007
  • An experimental study was performed to measure a ice concentration of ice slurry flowing in a pipe in a real time. In the present paper, we suggested a measuring method by a refractive index and compared it to other methods by a freezing point and a density. To measure the refractive index of the solution, ice particles in the ice slurry should be completely removed and a hydro-cyclone was introduced instead of a mesh. The measuring method through the refractive index coincided with the density method using the real-time solution density within ${\pm}5%$ error range, having the error range less than the other two methods. In the other hand, the measuring method through the density has a good resolution, but the result using the initial density of the solution was different more than 10% error from that using the real-time density. And it has an error range 1.5 times greater than the method through the refractive index.

A Study on the Measuring Method of Ice Slurry Viscosity Using the Falling Sphere Viscometer (낙구식 점도계를 이용한 아이스슬러리의 점도측정에 관한 연구)

  • Kim, Myoung-Jun;Yu, Jik-Su;Lim, Jae-Keun;Choe, Soon-Youl
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.8
    • /
    • pp.593-598
    • /
    • 2007
  • The present study has dealt with the measuring method of ice slurry viscosity using falling sphere viscometer. The experimental apparatus was composed by test section and high-speed video system. And the spheres used in this study were alumina and glass. The main parameters were ice packing factor (IPF) and falling velocity of sphere so the acquired results were discussed for these parameters. The viscosity of ice slurry was calculated by using measured falling velocity and moving distance at instantaneous time and the Stokes hypothesis was used for this calculation. It was clarified that possible measuring range was $IPF\;=\;0.06{\sim}0.14$ of this type of measuring device and measuring method. In addition, it was clarified that the viscosity of ice slurry increased to increase of ice packing factor (IPF) of ice slurry.

Experimental Study on Transformation of IPF and Pressure Drop in Branches with Ice Slurry (아이스슬러리의 분기관내 압력손실과 IPF 변화에 관한 실험적 연구)

  • 박기원;최현웅;노건상;정재천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.272-279
    • /
    • 2003
  • This study aimed to understand the effects of transporting ice slurry Particles through Pipes with branches. The experimental apparatus was constructed as ice slurry mixing tank. vortex pump, manometers for differential pressure measuring. IPF(ice packing factor) measuring instruments and branches as test sections. The experiments were carried out under various conditions. with concentration of water solution ranging between 0∼20wt% and velocity of water solution at the entry ranging between 1.5∼2.5m/s. The differential Pressure and IPF between the pipe entry and exit were measured. and flowing form was checked throughout the experiment. The pressure loss in 3d branches appeared compared with 6d branches so that it was very high. In the pressure loss of the inside and outside of branches. 6d branches was showed the difference. but was agreed in 3d branches The pressure loss according to concentration of water solution, low value appeared at 10wt% in 6d branches, at 20wt% in 3d branches. The pressure loss according to velocity, did not show large difference. The change of IPF at outlet, appeared +15∼-25% in 6d branches and 0∼-20% in 3d branches. The difference of IPF at the inside and outside of branches. appeared 10∼15% in 6d branches and maximum 5% in 3d branches.

The Heat Exchangers Performance Experiment for a Field Application Ice Slurry Cooling System (현장 적용 아이스슬러리 시스템의 열교환기 성능 실험)

  • Lee, Sang-Hoon;Yoo, Ho-Seon;Lee, Yoon-Pyo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1002-1007
    • /
    • 2009
  • The research are performed to check the characteristics of the ice slurry transport system for the district cooling. The system are installed at the 1st floored building which is as large as the $1204\;m^2$ ($86\;m{\times}14\;m$). Three kinds of heat exchanger are selected, such as, plate, spiral and shell & tube type, to apply to the ice slurry systems. Experiment was done in the two cases. The first case, circulation water flow fixed at the design conditions for the state to change the flow of the supply of ice slurry. The second case, Ice slurry flow fixed at the design conditions for the state to change the flow of circulation water. Both side of Energy balance was calculated. The performance of plate heat exchanger is higher than others and it's enthalpy effectiveness is higher too.

  • PDF

Effect on Ice Slurry Flowing in the Elbow of Various Angle (다양한 각도의 곡관 내에서 아이스슬러리의 유동에 따른 영향)

  • 김규목;박기원;권일욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.142-149
    • /
    • 2004
  • Recently, the government introduced the thermal storage system for reducing the electric power load. Especially, the ice slurry type has gained lots of interest due to its good heat transfer and flowing characteristics. This study was peformed to understand the effects of transporting ice slurry through elbows of various angle. Propylene glycol water solution was used and about 2 mm ice particles were circulated. The experiments were carried out under various conditions, such as concentration and velocity of water solution ranging between 0∼20 wt%, 1.5∼2.5 m/s, respectively. And elbows with 4 different angles of 30$^{\circ}$, 45$^{\circ}$, 90$^{\circ}$, 180$^{\circ}$. The differential pressure and IPF (ice packing factor) between the pipe entry and exit were measured. The tendency of pressure loss and outlet IPF in elbow is that the pressure loss was reduced as concentration and flow velocity of water solution is increased, and low value appeared at 10 wt% and 2.5 m/s. The variation of outlet IPF was compared with the inlet IPF in the range of $\pm$20%.

A Control of Ice Packing Factor of Ice Slurry in a Pipe using IPF Controller (IPF 조절기를 이용한 배관내 아이스 슬러리의 빙충전율 제어)

  • Kwon, Jae-Sung;Lee, Yoon-Pyo;Yoon, Seok-Mann
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1105-1110
    • /
    • 2008
  • An experimental study was performed to control Ice Packing Factor (IPF) of ice slurry in a pipe in a real time. This paper presented the concept that IPF can be adjusted by the amount of the solution contained to ice slurry. Based on this concept, we designed IPF controller consisting of the outlet tube providing ice slurry and the upper tube discharging only a solution through holes, and investigated the technical validity and efficiency of the controller experimentally. As a result, the original proposed IPF controller could not control IPF of ice slurry in a pipe. This is because an ice of ice slurry was drained out into not only the outlet but also the upper of the controller due to the size of the holes relatively large compared to the ice particle. Therefore, we changed the hole size of IPF controller surface using fine meshes and then, observed that IPF in a pipe was increased by $4{\sim}7$ percent when the hole size was $80{\mu}m$ and less.

  • PDF

Variation of Pressure Loss and IPF Flowing Ice Slurry in Straight Tube Inclined to Various Angle (다양한 각도로 기울어진 직관내에서 아이스슬러리 유동시 압력손실과 IPF 변화)

  • Kim Kyu-Mok;Park Ki-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1028-1034
    • /
    • 2004
  • Recently, the ice storage system using ice slurry has been used increasingly since it has been introduced where the rapid cooling load change is required. Because it overcomes a decrease of the melting performance and an increase of the thermal resistance on the ice layer in static ice thermal storage system. This study is performed to understand the effects of transporting ice slurry through horizontal, vertical and inclined tubes ($30^{\circ},\;45^{\circ}$). It used propylene glycol-water solution and ice particles (diameter of about 2 mm) in this experiment. The experiments were carried out under various conditions, with concentration of water solution ranging from 0 to $20wt\%$, and velocity of water solution at the entry ranging from 1.5 to 2.5 m/s. The results were as follows: Regarding the angle of inclined tube, the highest pressure loss was measured for vertical tube and the pressure loss for $45^{\circ},\;30^{\circ}$, horizontal straight tubes were lower successively. The lowest pressure loss in these tubes was measured at velocity of $2.0{\sim}2.5m/s$ and concentration of $10wt\%$. The outlet IPF was likewise stable in these ranges.

Characteristics of the Ice Slurry Transportation System for District Cooling Depending on the Transportation Lines (지역냉방용 아이스슬러리 수송시스템의 배관방식에 따른 특성)

  • Lee Yoon-Pyo;Chung Jae-Dong;Yoon Seok-Mann
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.571-577
    • /
    • 2006
  • The characteristics of ice packing factor (IPF) at the ice slurry system using one line type are compared with the system using two lines type. The installation space for one transporting line is saved at the one line system. For the one line type, the ice packing factor is reduced along the downstream, but for the two lines type, the ice packing factor is fixed. For the one line system, mass flow rate in the main line is fixed along the down-stream, but for two lines system, the mass flow rate in the main line is reduced along the downstream. For one line system, along the down stream after IPF=0, the temperature at the main steam is increased, and the extracted mass flow is increased. The initial IPF, at which the IPF is not arrived at zero upto the final node, is proposed for the B area.

Ice Slurry Formation of a Solution in a Pressurized Plate Heat Exchanger (가압 판형 열교환기에 의한 수용액의 아이스슬러리 생성)

  • Lee Dong-Gyu;Kim Byung-Seon;Peck Jong-Hyeon;Hong Hi-Ki;Kang Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.596-602
    • /
    • 2006
  • Ice adhesion and blockage problems have been issued in continuous ice slurry making process. So we composed continuous ice slurry making device using a commercial small plate heat exchanger (PHX), and investigated character of ice formation. An experiment of ice formation was peformed with an aqueous solution of ethylene glycol 7 mass%. In the experiment, the effect of the pressurization on ice slurry formation during the cooling process was investigated. The pressurization test for the aqueous solution was performed by setting valves at the PHX inlet and outlet. At the results, the time of continuous ice formation increased as the pressure of the plate heat exchanger increased for cooling temperature of $-5^{\circ}C$. Also continuous ice formation at the cooling temperature of $-7^{\circ}C$ showed a possibility. It was found that the pressurization may contribute to suppress the dissolution of supercooled aqueous solution in the PHX.