• Title/Summary/Keyword: 슬러그류

Search Result 8, Processing Time 0.021 seconds

Measurement of the Void Fraction of Slug and Bubbly Flows Using Three-Ring Impedance Meters (3-ring 임피던스미터를 이용한 슬러그류 및 기포류의 기공률 측정)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.83-88
    • /
    • 2012
  • Real slug and bubbly flows were measured using a three-ring impedance meter that can efficiently measure the void fraction of two-phase flows in a tube. First, the fitting curves between the signal from the impedance meters and the void fraction were found. The impedance meter had different fitting curves for slug and bubbly flows that had the same void fraction. An impedance meter should choose one of the two fitting curves according to the flow pattern, and the flow patterns can be recognized using the measured void fraction. The velocities and sizes of the bubbles were calculated using the void fraction curves measured by two impedance meters.

Real-time measurement of void fraction and its propagation speed of slug flow with two Conductance meters (두 개의 컨덕턴스미터를 이용한 슬러그류의 기공률 및 기공률 전달속력 실시간 측정)

  • Kim, Jong-Rok;Ahn, Yeh-Chan;Kang, Deok-Hong;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1569-1573
    • /
    • 2004
  • Two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with separated probe designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From time lag between two conductance meter, we could calculate the propagation speed of void fraction.

  • PDF

A Real-Time Measurement of Slug Flow Using Electromagnetic Flowmeter with High frequency Triangular Excitation (고주파 삼각파 여자법을 사용한 실시간 슬러그 유동 측정용 전자기유량계)

  • Ahn, Yeh-Chan;Cha, Jae-Eun;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1570-1577
    • /
    • 2002
  • In order to investigate the characteristics of two-phase slug flow, an electromagnetic flowmeter with 240Hz triangular AC excitation was designed and manufactured. The signals and noise from the flowmeter were obtained, and analyzed in comparison with the observations with a high speed CCD camera. The uncertainty of the flowmeter under single-phase flow was $\pm$ 2.24% in real-time. For two-phase slug flow, electromagnetic flowmeter provided real-time simultaneous measurements of the mean film velocity around Taylor bubble and the relative location and the length of the bubble. Besides, it is an easier and cheaper method for measuring mean film velocity than others such as photochromic dye activation method or particle image velocimetry.

Development of a Current-Type Electromagnetic Flowmeter to Obtain the Liquid Mean Velocity in Two-Phase Slug Flow (슬러그류 액상속도 측정용 전류형식 전자기유량계 개발)

  • Kang, Deok-Hong;Ahn, Yeh-Chan;Kim, Jong-Rok;Oh, Byung-Do;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1951-1956
    • /
    • 2004
  • The transient nature and complex flow geometries of two-phase gas-liquid flows cause fundamental difficulties when measuring flow velocity using an electromagnetic flowmeter. Recently, a current-sensing flowmeter was introduced to obtain measurements with high temporal resolution (Ahn et $al.^{(1)}$). In this study, current-sensing flowmeter theory was applied to measure the fast velocity transients in slug flows. To do this, the velocity fields of axisymmetric gas-liquid slug flow in a vertical pipe were obtained using Volume-of-Fluid (VOF) method and the virtual potential distributions for the electrodes of finite size were also computed using the finite volume method for the simulated slug flow. The output signal prediction for slug flow was carried out from the velocity and virtual potential (or weight function) fields. The flowmeter was numerically calibrated to obtain the cross-sectional liquid mean velocity at an electrode plane from the predicted output signal. Two calibration parameters are required for this procedure: a flow pattern coefficient and a localization parameter. The flow pattern coefficient was defined by the ratio of the liquid resistance between the electrodes for two-phase flow with respect to that for single-phase flow, and the localization parameter was introduced to avoid errors in the flowmeter readings caused by liquid acceleration or deceleration around the electrodes. These parameters were also calculated from the computed velocity and virtual potential fields. The results can be used to obtain the liquid mean velocity from the slug flow signal measured by a current-sensing flowmeter.

  • PDF

Heat transfer characteristic and flow pattern investigation in micro-channels during two-phase flow boiling (이상 유동 비등 시 마이크로 채널에서의 열전달 특성과 유동양식 조사)

  • Choi, Yong-Seok;Lim, Tae-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.696-701
    • /
    • 2015
  • Two-phase flow boiling experiments were conducted in 15 micro-channels with a depth of 0.2 mm, width of 0.45 mm, and length of 60 mm. FC-72 was used as the working fluid, and the mass fluxes ranged from 200 to $400kg/m^2s$. Tests were performed over a heat flux range of $5-40kW/m^2$ and vapor quality range of 0.1-0.9. The heat transfer coefficient sharply decreased at a lower heat flux and then was kept approximately constant as the heat flux is increased. Based on the measured heat transfer data, the flow pattern was simply classified into bubbly, slug, churn, and wavy/annular flows using the existing method. In addition, these classified results were compared to the transition criterion to wavy/annular regime. However, it was found that the existing transition criterion did not satisfactorily predict the transition criterion to annular regime for the present data.

Hydraulic Parameter Estimation of a Granite Area Using Slug Tests (순간충격시험에 의한 화강암지역의 수리적 매개변수 산출)

  • 함세영;김문수;성익환;이병대;김광성
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.63-79
    • /
    • 2001
  • This study is aimed for estimating hydraulic parameters using the Cooper-Bredehoeft-Papadopulos, the Hvorslev, and the Bouwer & Rice methods at nineteen test holes in Me. Geumjeong area composed of Bulguksa granites, and for characterizing hydraulic properties at the test holes with relatioll to drill core data. The relation among hydraulic Dammeters obtained by the three methods is also considered. The study area is divided into four sub-areas to consider the hydraulic characteristics. The difference of hydraulic conductivity estimates between the injection and the withdrawal slug test may be due to penncable fracture distlibutions around the test hole and/or the disturbance of fine mateIials in the fractures induced by the pressure variation due to different mechanisms of test initiation. The hydraulic conductivity estimates detennined by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods ranges from 10$^{-8}$ to lO$^{-5}$m/sec, and the ranges of average values are from 10$^{-7}$ to 10$^{-6}$m/sec. Also, the transmissivity ranges from 10$^{-7}$ to 10$^{-5}$$m^2$/sec. Comparing average hydraulic conductivity by the Cooper-Bredehoeft-Papadopulos, the Hvorslev and the Bouwer & Rice methods, by the Hvorslev method has the highest values, then the Bouwer & Rice method, and the Cooper-Bredehoeft-Papadopulos method has the lowest.

  • PDF

Comparison of Solid Circulation Characteristics with Change of Lower Loop Seal Geometry in a Circulating Fluidized Bed (순환유동층에서 하부 루프실 형태 변화에 따른 고체순환 특성 비교)

  • Lee, Dong-Ho;Jo, Sung-Ho;Jin, Gyoung-Tae;Yi, Chang-Keun;Ryu, Ho-Jung;Park, Seung Bin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.522-529
    • /
    • 2014
  • Circulating fluidized bed system consists of SEWGS reactor - lower loop seal - regeneration reactor - riser - cyclone - upper loop seal has been used for solid circulation between the SEWGS reactor and the regeneration reactor in a SEWGS system for pre-combustion $CO_2$ capture. A vertical type lower loop seal has been used in current system but this lower loop seal requires high gas flow rate through the lower loop seal for fluidization and smooth solid circulation, and consequently, causes slugging behavior sometimes. To overcome these disadvantages, inclined type lower loop seal was proposed by this study. Solid circulation characteristics with change of lower loop seal geometry were measured and compared in a bubbling - bubbling - riser type circulating fluidized bed using $CO_2$ absorbent (P-78) as bed material at ambient temperature and pressure. We could conclude that the inclined lower loop seal is better than the vertical type lower loop seal from the viewpoints of minimum flow rate requirement for stable solid circulation and solid height change during solid circulation.