• Title/Summary/Keyword: 슬래브 데크

Search Result 52, Processing Time 0.024 seconds

A Study on the Productivity Analysis of Slab Construction Methods - Focused on Conventional Slab, Form Deckplate, Ferro Deckplate, and Kem Deckplate - (슬래브 공법간의 생산성 분석$\cdot$비교에 관한 연구 - 재래식 슬래브, 골형 데크플레이트, 철근트러스 데크플레이트, 그리고 내화구조용 뎨크플레이트를 중심으로 -)

  • Yoo Jin-Ho;Kim Young-Su
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.401-405
    • /
    • 2001
  • The purpose of this study is to provide productivity analysis of conventional slab method productivity and deckplate methods in building construction. Productivity analysis was performed on the data in construction sites and a interview survey. The results of this study are as follow: 1. Kem deckplate is analyzed to the most economic in a view of the cost. 2. Kem deckplate is analyzed to the most economic and order Ferro deckplate, Form deckplate and conventional slab method in a view of the productivity. 3. Kem deckplate is analyzed to the superior slab method in a view of the quality. 4. Conventional slab method is investigated disaster of precipitation and Deckplate method is hazard of an eletric shock. Therefore, Kem deckplate method is analyzed to the superior productivity

  • PDF

Study on the Composite Capacity of Composite Slabs by Deckplate Section Shapes (데크플레이트 단면형상에 따른 합성슬래브의 합성능력에 관한 연구)

  • Ju, Gi-Su;Park, Sung-Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.671-680
    • /
    • 2000
  • This paper provides the results of the study on the structural behavior of the composite metal deck slab system. The experimental study on composite slabs with trapezoidal and inverse-triangle-top-flange deckplate result, it was found that the geometry of the cross-section was more important than any other factors to ensure the composite action of deck slabs. Hence the inverse-triangle-top-flange of closed box was more effective on the shear slip and deflection than the trapezoidal deck of open shape. These results show that the continuing development of composite deck plate must consider importantly the geometry of the deck. The experimental results were compared with established formulas and were analysed to advance a theory on composite slabs using deckplates.

  • PDF

An Analytical Study on the Structural Behavior of the Composite Slab with New-Shaped Deckplate (신형상의 합성용 데크플레이트를 사용한 합성슬래브의 구조적 거동에 관한 해석적 연구)

  • Moon, Tae Sup;Bae, Jong Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.181-190
    • /
    • 1999
  • The objective of this study is to investigate the structural behavior of the composite slabs with the new-shaped deckplate. In order to examine the deckplate as structural members, the composite slabs with new-shaped deckplate are compared and verified with the international design codes, and the simple inertia-moment equation of the composite slabs is suggested from the regression analysis of the results of the experiments. Besides, the finite element analysis was added on the purpose of the observation of structural behavior of the section items such as the Locking rib and the Dovetail. 36 experiments of composite slabs were performed with two new-type deckplates. And the finite-element analysis was performed by ABAQUS package with the function of the 3-dimension solid modeling.

  • PDF

A Shear Bond Chracteristics of Composite Slab with Closed-Shape Deckplate (폐쇄형 데크플레이트를 사용한 합성슬래브의 전단부착 특성에 관한 연구)

  • Ju, Gi Su;Park, Sung Moo
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.557-566
    • /
    • 2001
  • Composite slab with deckplate needs sufficient bond strength between deckplate and concrete to conduct composite behavior Composite slab can transfer the shear by either chemical adhesion interface interlock, or active friction. There are several way of mechanical shear connection in composite slab. that is embossments shear connector shape of deckplate etc. Effect of mechanical interaction is deped on shape of deckplate which is to prevent peeling between deckplate and concrete and an amount of shear connector. The behavior and strength of the connection between the decking and the concrete slab due to embossments and end anchorage may be estimated using the push-off tests described in this paper We proposed the equation of shear bond strength in the composite slab It will be use to design by basic data in composite slab.

  • PDF

An Experimental Study on the Vibration and Fire Resistance of Steel Void Deck Plate Slab for Omega-steel plate (오메가형 강판을 중공체로 사용한 데크플레이트 슬래브의 진동 및 내화에 관한 실험적 연구)

  • Kim, Sang-Seup;Ryu, Deog-Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.705-713
    • /
    • 2011
  • This study was conducted to assess the vibration capacity and the fire resistance capacity of a deck plate slab using an omega steel plate as the void deck plate. First, to evaluate the vibration capacity of the deck plate slab after the insertion of the omega steel plate, three 150mm specimens and three 200mm specimens were made using the slab depth as the main variable. Each specimen consisted of an existing deck plate and two specimens, using the topping depth as the variable according to the slab depth. Second, two real-size specimens were made to evaluate the fire resistance capacity. The results of the test showed that the steel-wire-integrated deck plate slab that was inserted in the omega steel plate did not have a vibration problem due to the void deck plate, because the natural frequency was 12.66-14.09 Hz in the vibration test, and each specimen satisfied the appraisal standards for the load capacity, heat block quality, and chloride inhibition for two hours in the fire resistance test. Consequently, the steel-wire-integrated deck plate slab that was inserted in the omega steel plate can be reduced using the concrete volume and can have higher vibration and fire resistance capacities, similar to the existing deck plate.

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

An Experimental Study on the Shear Behavior of Composite Slabs Using Newly Developed Flat Deck-Plate(ACE-DECK) (신개발된 평데크플레이트(ACE-DECk)를 이용한 합성술래브의 전단거동에 관한 실험적 연구)

  • Heo, Byung-wook;Yang, Myung-Sook;Bae, Kyu-woong;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.255-263
    • /
    • 2001
  • Longitudinal shear failure is the most common failure-type in composite slabs. In this paper, the shear-connection behavior of composite slabs with a particular profiled steel sheeting, so called ACE-DECK, having a depth of 60mm is studied experimentaly. Twenty two pull-out test specimens of different shapes, concrete topping thickness, and different steel sheeting thickness are carried out. It is founded that the shear connection behavior of composite slabs are not affected significantly in the steel sheeting thickness and concrete topping thickness. A new type of profiled steel sheeting is more effective in shear-bond strength that of existing flat-type deck plate, which can offer longitudinal shear strength in composite slope up to $3.6kgf/cm^2$

  • PDF

A Study on the Structural Behavior of the Composite Slab with New-Shaped Deckplate (신형상 데크플레이트를 이용한 합성슬라브의 구조적인 거동에 대한 연구)

  • Huh, Choong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.341-350
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of the composite slabs with the new metal deckplate. The new deckplate can be used as structural member with topping concrete. So several experiments of this structural test and the fire resistance test were done. From this experiments. slabs with new metal deckpklate were verified as composite slabs. In this paper, this verifications were compared with the international design methods. For experiment. 49 specimens were made. the main parameters are deckplate thickness (1.2mm. 1.6mm) depth of topping concrete(85mm. 90mm). support condition(simple, 2-span), shear reinforcment(studs), span(2.7m, 3.0m, 3.3m. 3.6m. 3.9m) and shear span(L/3, L/4, L/7). We analyzed the structural behavior of composite slab throughout the moment-curvature relationship which is obtained with the program using the computer language. Turbo C. From this development for slab system, the reinforced concrete or steel structure building may be easy, economical for construction, And informations about the structural behavior of composite slabs will be utilized to established korea standard.

  • PDF

An Experimental Study on the Flexural Behavior for the Slabs using the Suspending Deck plate (매닮 데크플레이트를 이용한 슬래브의 휨거동에 관한 연구)

  • Bae, Kyu Woong;Lee, Sang Sup;Park, Keum Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.25-34
    • /
    • 2013
  • The purpose of the this paper is experimentally to investigate flexural behavior of slabs with suspending the deck plate. The main experimental parameters are the depth and thickness of the deck plate, slab span, rebar and support conditions. Total number of six specimens were tested and manufactured in slabs under vertical load. Based on the results of the test, the flexural behavior for slabs is determined according to the vertical deformation of the slabs, regardless of the main experimental parameters. Bending rebar reinforcement in the rib cross-section specimens can be evaluated significantly higher initial stiffness, crack stiffness and flexural strength. Result of the comparison of the theory value appeared to be fairly well matched to average 1.05.

Structural Performance Evaluation on Flexural and Shear Capacity for Weight Reducing Steel Wire-Integrated Void Deck Plate Slab (자중저감 철선일체형 중공 데크플레이트 슬래브의 휨 및 전단내력에 대한 구조성능평가)

  • Kim, Sang-Seup;Ryu, Deog-Su;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.411-422
    • /
    • 2012
  • The purpose of this study is to evaluate the flexural and shear capacity of steel wire-integrated void deck plate slabs. In order to evaluate flexural and shear capacity, we make five 150mmspecimens and three 200mmspecimens by slab depth as main variable. Each series of specimen is comprised of an existing steel wire-integrated deck-plate slab and two specimens using topping depth as variable. From the series of experiments, steel wire-integrated void deck plate slabs has any decline in flexural and shear performance. Therefore, a void-deck-plate slab which inserts Omega-steel plate showed reducing a using concrete-volume and had flexural and shear capacity following existing steel wire-integrated deck-plate.