• Title/Summary/Keyword: 스핀에코

Search Result 49, Processing Time 0.041 seconds

Diagnosis of Meniscal Tear of the Knee Using Proton-weighted Fast Spin-Echo MR Imaging : Can be an Alternative to Conventional Spin-Echo Imaging\ulcorner (양지밀도강조 고속 스핀에코 자기공명영상을 이용한 슬관절 반월판 열상의 진단 : 고식적 스핀에코를 대체할 수 있는가\ulcorner)

  • 김기준;이재희;주종관;이성용
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.73-77
    • /
    • 1999
  • Purpose : The purpose of the study was to evaluate the sensitivity and specificity of proton-weighted fast spin-echo MR imaging in diagnosing the meniscal tear of knee as an reasonable substitute for conventional spin-echo imaging. Materials and Methods : 102 consecutive patients, proved by surgery, proved by surgery, were participated in this study. All of them were suspected internal derangement of knee, examined by fast spin-echo MR imaging including sagittal and coronal images on a 1.5T MR imager and underwent arthroscopic or open surgery of knee joint within 2 months. These images were reviewed retrospectively by three radiologists. The sensitivity and specificity of meniscal tear were calculated. Results : The sensitivity and specificity of meniscal tear using proton-weighted fast spin-echo MR imaging were 94%, 93% inmedialmeniscus and 92%, 88% in lateral meniscus. Conclusion : The sensitivity and specificity of meniscal tear using proton weighted fast-spin echo MR images were as high as those using conventional spin-echo images. The proton-weighted fast-spin echo MR imaging can be an alternative to conventional spin-echo MR imaging in diagnosing meniscal tear of the knee.

  • PDF

A Unified Gradient Shape on the Slice-Selection Axis for Flow Compensation (스핀에코 펄스 시퀀스의 슬라이스 선택방향에서 혈류 보상을 위한 통일 경사자장법 연구)

  • Pickup, Stephen;Jahng, Geon-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.70-80
    • /
    • 2006
  • Spin echo gradient moment nulling pulse sequences were designed and implemented on a clinical magnetic resonance imaging system. A new technique was introduced for flow compensation that minimized echo time and effectively suppresses unwanted echoes on the slice selection gradient axis in spin echo sequences. A unified gradient shape was used in all orders of flow compensation up to the third order. A dual-purpose gradient was applied for flow compensation and to reduce unwanted artifacts. The sequences were used to generate images of phantoms and/or human brains. This technique was especially good at reducing eddy currents and artifacts related to imperfection of the refocusing pulse. The developed sequences were found to have shorter echo times and better flow compensation in through-plane flow than those of the previous models that were used by other investigators.

  • PDF

Multi-slice Multi-echo Pulsed-gradient Spin-echo (MePGSE) Sequence for Diffusion Tensor Imaging MRI: A Preliminary Result (일회 영상으로 확산텐서 자기공명영상을 얻을 수 있는 다편-다에코 펄스 경사자장 스핀에코(MePGSE) 시퀀스의 초기 결과)

  • Jahng, Geon-Ho;Pickup, Stephen
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.65-72
    • /
    • 2007
  • An echo planar imaging (EPI)-based spin-echo sequence Is often used to obtain diffusion tensor imaging (DTI) data on most of the clinical MRI systems, However, this sequence is confounded with the susceptibility artifacts, especially on the temporal lobe in the human brain. Therefore, the objective of this study was to design a pulse sequence that relatively immunizes the susceptibility artifacts, but can map diffusion tensor components in a single-shot mode. A multi-slice multi-echo pulsed-gradient spin-echo (MePGSE) sequence with eight echoes wasdeveloped with selective refocusing pulses for all slices to map the full tensor. The first seven echoes in the train were diffusion-weighted allowing for the observation of diffusion in several different directions in a single experiment and the last echo was for crusher of the residual magnetization. All components of diffusion tensor were measured by a single shot experiment. The sequence was applied in diffusive phantoms. The preliminary experimental verification of the sequence was illustrated by measuring the apparent diffusion coefficient (ADC) for tap water and by measuring diffusion tensor components for watermelon. The ADC values in the series of the water phantom were reliable. The MePGSE sequence, therefore, may be useful in human brain studies.

  • PDF

Effectiveness of a fast spin echo technique using the signal void in acquisition of black blood images (흑혈류영상 획득 시 신호소실을 활용한 고속스핀에코기법의 유용성)

  • Choi, Kwan-Woo;Kim, Yoon-Shin;Son, Soon-Yong;Lee, Hee-Ju;Min, Jung-Whan;Lee, Jong-Seok;Yoo, Beong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4313-4319
    • /
    • 2013
  • The purpose of our study is to shorten the scanning time and minimize the inconveniences of the patients in acquisition of the black blood images using the signal void effect in the fast spin echo technique while keeping the diagnostic value of the test. Thirty-two consecutive patients who underwent black blood MR imaging were examed with additional double inversion recovery (DIR) sequence and the conventional fast spin echo (FSE) sequence. Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of the internal carotid arteries' lumen were compared in T1 and T2 weighted images to determine whether there are differences between the two techniques for depiction of the signal void effect inside the vessel wall. The FSE images showed lower SNR values than the DIR images in both of the T1 and T2 weighted images (11.49% and 13.66% respectively). While the CNR values were higher in the FSE images than in the DIR images in both of the T1 and T2 weighted images (8.69% and 7.55% respectively).There was no significant difference between the two techniques for either of the SNR or CNR (p>0.05, p>0.05 respectively). The DIR and the FSE images demonstrated almost identical imaging patterns. Therefore, it is anticipated that the use of FSE technique in acquisition of the black blood imaging could reduce the inconveniences of the patients during the scanning and minimize exam time while keeping the diagnostic value of the test.

The Comparison between Single Shot Turbo Spin Echo and B-FFE (Balanced Turbo Field-echo) in the Differentiation of Focal Liver Lesions (국소 간병변 감별에서 단발고속스핀에코 기법과 균형항정상 태세차를 이용한 고속영역 기법간의 비교)

  • Kim, Young-Chul;Kim, Myeong-Jin;Cha, Seung-Whan;Chung, Yong-Eun;Han, Kwang-Hyup;Choi, Jin-Sub
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.39-48
    • /
    • 2007
  • Purpose : To determine the diagnostic accuracy of four different sequences : moderately T2 weighted, two heavily T2-weighted single shot turbo spin-echo sequence and breath-hold axial-2D balanced turbo field-echo sequence(bFFE) for characterization of focal lesions. Materials and Methods : During the 3-month period between June and August 2005, seventy-six patients were proved to have ninety-three focal hepatic lesions on MR imaging. The patients consisted of 49 men and 27 women (age range, 15-75 years; mean age, 56.23 years). All MR images were acquired on a 1.5-T MR using the following sequences: 1. A breath-hold axial T2-weighted single shot turbo spin-echo sequence, 2. a breath-hold axial-2D balanced turbo field-echo sequence. Two radiologists performed quantitative analysis. Another radiologist measured the lesion-to-liver contrast-to-noise ratio at the region-of-interest in the four sequences. Results : There was no significant difference in inter-observer variability between the four sequences. The accuracy for both cyst and malignancy of moderate T2 weighted MRI (echo time: 80 msec) was also highest. There was significant difference for lesion characterization between moderate T2 weighted MRI and balanced steady state procession (p-value: 0.004) in the second reader. For longer echo time, the CNR of cystic lesions were markedly increased in comparison to lesions of other component. Conclusion : The accuracy and inter-observer variability of single shot turbo spin echo T2 weighted sequence was higher than bFFE. Although there was no statically significant difference, moderate T2 weighted MRI (echo time: 80 msec) was more accurate than heavily T2 weighted sequence (echo time: 300 msec). If the results for lesion characterization is equivocal in TE 80, the addition of heavily T2 weighted MRI (echo time: 180 msec) can be helpful.

  • PDF

T1-weighted MR Imaging of the Neonatal Brain at 3.0 Tesla: Comparison of Spin Echo, Fast Inversion Recovery, and Magnetization-prepared Three Dimensional Gradient Echo Techniques (3T 자기공명영상 장비에서 신생아 뇌의 T1 강조 영상: 스핀에코, 고속 역전회복, 자기화 삼차원 경사에코기법의 비교)

  • Jeong, Jee-Young;Yoo, So-Young;Jang, Kyung-Mi;Eo, Hong;Lee, Jung-Hee;Kim, Ji-Hye
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the usefulness of fast inversion recovery (FIR) and magnetization-prepared three dimensional gradient echo sequence (3D GRE) T1-weighted sequences for neonatal brain imaging compared with spin echo (SE) sequence in a 3T MR unit. Materials and Methods: T1-weighted axial SE, FIR and 3D GRE sequences were evaluated from 3T brain MR imaging in 20 neonates. The signal-to-noise ratio (SNR) of different tissues was measured and contrast-to-noise ratios (CNR) were determined and compared in each of the sequences. Visual analysis was carried out by grading gray-white matter differentiation, myelination, and artifacts. The Wilcoxon signed ranked test was used for evaluation of the statistical significance of CNR differences between the sequences. Results: Among the three sequences, the 3D GRE had the best SNRs. CNRs obtained with FIR and 3D GRE were statistically superior to those obtained with SE; these CNRs were better on the 3D GRE compared to the FIR. Gray to white matter differentiation and myelination were better delineated on the FIR and 3D GRE than the SE. However, motion artifacts were more commonly observed on the 3D GRE and flow-related artifacts of vessels were frequently seen on the FIR. Conclusion: FIR and 3D GRE are valuable alternative T1-weighted sequences to conventional SE imaging of the neonatal brain at 3T providing superior image quality.

  • PDF

T1-, T2-weighted, and FLAIR Imaging: Clinical Application (T1, T2강조영상, FLAIR영상의 임상 적용)

  • Kim, Jae-Hyoung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.13 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • T1-, and T2-weighted imagings and FLAIR (fluid attenuated inversion recovery) imaging are fundamental imaging methods in the brain. T1-weighted imaging is a spin-echo sequence with short TR and short TE and produces the tissue contrast by different T1 relaxation times. In other words, short TR maximizes the difference of the longituidinal magnetization recovery between the tissues. T2-weighted imaging is a spin-echo sequence with long TR and long TE and produces the tissue contrast by different T2 relaxation times. Long TE maximizes the difference of the transverse magnetization decay between the tissues. FLAIR is an inversion recovery sequence using 180 degree inversion pulse. 2500 msec of inversion time is applied to suppress the CSF signal.

  • PDF

In Vitro Imaging of MRI and Ultrasound for Gastric Carcinoma (위암 조직의 자기공명영상과 초음파 소견에 대한 비교 연구)

  • Kil, Sung-Won;Jee, Keum-Nahn
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.178-187
    • /
    • 2008
  • Purpose : To evaluate and compare the diagnostic accuracy of MRI and ultrasound(US) for estimation of invasion depth of gastric carcinoma by correlation with histopathologic findings in vitro and to find out the best MR pulse sequence for detection and accurate delineation of tumor. Materials and Methods : Resected specimen of total or subtotal gastrectomy from 53 patients with gastric carcinoma were done of imaging studies of MRI and US. And US was examined by using high frequency linear transducer for tumor invasion depth by a radiologist. In each case, both imaging findings of MRI and US were evaluated independently for tumor detection and invasion depth by consensus of two radiologists and were compared the diagnostic accuracy between two imaging modalities according to the histopathologic findings. MR imaging with five MR pulse sequences, spin echo T1 and in- and out-of phase gradient echo T1 weighted images, FSE and SSFSE T2 weighted images, were performed. Five MR pulse sequences were evaluated and compared on the point of detection and accurate distinction of tumor from surrounding normal tissue. Results : In EGC, diagnostic accuracy of US(77%) was superior than that of MRI(59%) but no statistically significant difference was noted between two imaging modalities(p=0.096). In AGC, both imaging modalities of MRI and US showed relatively high diagnostic accuracy as 97% and 84% respectively. Diagnostic accuracy of MRI was statistically better than that of US at the significant level(p<0.001). The best MR pulse sequence among five in each specimen was FSE T2WI(75.5%, 40/53) in both EGC and AGC. In AGC, FSE T2WI showed excellent imaging quality by showing very high ratio (93.5%, 29/31) of accurate delineation of tumor. Conclusion : MRI and US show relatively high diagnostic accuracy in the evaluation of tumor invasion depth of resected specimen in AGC. The most excellent pulse sequence of MRI for the evaluation of tumor invasion depth is FSE T2WI on the point of detection and accurate delineation of tumor in both EGC and AGC.

  • PDF

Usefulness of Dual-Echo in Steady State (DESS) Image in Chondromalacia of Knee Joint: Comparison of DESS and Turbo Spin-Echo MR Images (슬관절 연골 연화증의 진단에서의 Dual Echo in Steady State (DESS) 영상의 유용성 : 급속 스핀에코 자기공명 영상과 비교)

  • 윤삼현;하두회
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.66-72
    • /
    • 1999
  • Purpose : To evaluate the usefulness of Dual Echo in Steady State(DESS) image in the diagnosis of chondromalacia of the knee compared with turbo spin-echo MR images Materials and Methods : We included 26 patients with chondromalacia of the knee. MR imaging was obtained with a 1.5T imager. Sagittal and coronal double echo T2 weighted images(TR/TE 3000-4200/16-96msec, FOV $140-160{\times}140-160mm$, matrix size $180{\times}256$, slice thickness 4.0mm, interslice gap 0.5mm), and sagittal DESS image(TR/TE 25.4/9.0msec, flip angle $35-45^{\circ}$, FOV $150-160{\times}150-160mm,{\;}matrix{\;}size{\;}192{\times}256$, effective slice thickness 1.5mm) were obtained. Cartilage lesions were staged according to a modified scheme proposed by Outerbirdge: grade 0, normal; grade 1, softening or/and swelling; grade 2, mild surface fibrillation or/and less than 50% of cartilage thickness; grade 3, severe surface fibrillation or/and loss of more than 50% of cartilage thickness but without exposure of subchondral bone; and grade 4, complete loss of cartilage with subchondral bone exposure. Gradings were determined by two readers with consensus, and patellofemoral, medial and lateral tibiofemoral compartments were evaluated. Results : Arthroscopic findings revealed grade 1 in seven cases, grade 2 in 21 cases, grade 3 in six cases, and grade 4 in 18 cases. Sensitivity of turbo spin-echo MR image was as follows; 0%, 14%, 0%, 61% in each grade, and sensitivity of DESS image was as follows; 0%, 33%, 50%, 67%, in each grade(p=0.001). In the detection of chondromalacic lesions regardless of gradings, sensitivity, specificity and accuracy of conventional MR image were 59.6% 88.6% 78.8%, and of DESS image, 73.1% 88.4%, 82.2%(p=0.007). Conclusion : For chondromalacia of knee joints, DESS images showed higher sensitivity than turbo spin-echo MR images. Therefore, DESS images will be helpful for diagnosis of chondromalacia of knee joints.

  • PDF