• Title/Summary/Keyword: 스피커 그릴

Search Result 2, Processing Time 0.013 seconds

Studying the Acoustic Impedance as a Function of Hole Area of Grille for Micro-Speaker (마이크로스피커 그릴의 구멍크기에 따른 음향임피던스 특성연구)

  • Oh Sei-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.101-106
    • /
    • 2006
  • In this study, the impedance behavior of micro-speaker had been investigated as a function of hole area existing on the grille. In order to theoretically study the change of acoustical property due to the different total hole area, the holes were treated as a short open pipe system, such as an orifice. This theoretical result was in an excellent agreement with the experimental one. In detail, the acoustic impedance to be caused by the hole could be greatly increased with the decrease of hole area. Therefore, it can be concluded that the acoustic property of micro-speaker could be greatly changed by increasing the acoustic impedance of hole with reducing hole area.

Injection Molding Analysis of Map Pocket with a Speaker Grill Using Shell Element (박막 요소를 이용한 스피커 그릴 일체형 맵 포켓의 사출 성형 해석)

  • Kim, Hong-Seok;Jo, Myeong-Sang;Son, Jung-Sik;Seo, Tae-Su;Kim, Tae-Ung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1294-1301
    • /
    • 2001
  • In order to reduce the time and cost for assembly, automobile speaker grills have been injection molded with door trims or map pockets in one piece recently. However, several defects such as short shots or air traps can easily occur due to the decreased fluidity of the melting polymer according to the excessive heat transfer to the mold. Therefore, it is necessary to optimize the resin feed system and predict possible defects by CAE analysis. However it is not possible to obtain exact analysis results for the speaker grill by using general shell elements since the heat transfer in the thickness direction which is the dominant factor of the filling stage can not be considered. Therefore, there have been several efforts to simulate the injection molding nature of the speaker grill by using shell elements with an effective thickness which is smaller than the actual thickness of the part. Two empirical values have been recommended for the effective thickness in real practice. One is 50∼70% of the thickness of the speaker grill and another is the gap distance between the adjacent holes. In this paper, CAE analyses of a map pocket with a speaker grill were conducted using shell elements with both of these recommended effective thicknesses, and the predicted flow fronts were compared with the findings from injection molding experiments. The commercial code MOLDFLOW was used for injection molding analysis and an 850 ton injection molding machine was used for experiments.