• Title/Summary/Keyword: 스프링클러헤드

Search Result 90, Processing Time 0.018 seconds

Analysis of Primary Breakup Characteristics Depending on the Boss and Deflector Dimension of Fire Sprinkler Head using LES-VoF (LES-VoF를 이용한 소방용 스프링클러 헤드의 보스 및 디플렉터 치수에 따른 1차 분열 특성 분석)

  • Kim, Taehoon
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.127-134
    • /
    • 2021
  • Fire sprinkler initial spray was analyzed by Large eddy simulation (LES) and Volume of Fluid (VoF) integrated method. The IsoAdvector geometric VoF was used to identify the liquid-gas interface clearly even with the large Courant-Friedrichs-Lewy number. To reduce the computational costs, sector meshes and Adaptive Mesh Refinement up to level 3 were used. Base mesh size was 1 mm, which is roughly equivalent to the initial sprinkler droplet. Top surface radius of boss and deflector size were modified to investigate the effects of sprinkler head design on primary breakup process. When top surface radius of boss was increased, vertical liquid sheet was formed. This phenomenon reduced the sheet breakup radius, sheet thickness and velocity. Due to reduced liquid sheet thickness, a large amount of ligaments was created from the liquid sheet. As a result, there was a dramatic decrease in volume per surface area, indicating an increase in breakup process. Spray pattern viewed in radial direction also changed when top surface radius of boss increased. When top surface radius of boss was increased, a T-shaped pattern was observed while a V-shaped pattern was observed in all other cases. When the deflector size increases, the spray pattern remains V-shaped, even if the top surface radius of boss increased. Further studies on promoting atomization of the water supplied to the lower part of the sprinkler head in the T-shape pattern should be conducted.

A Study on the Recording Technology of Fire Propagation Prevention Wall Using Horticultural Plants (원예식물을 식재한 화재확산 방지용 벽면녹화 기술연구)

  • Moon, Jong-Wook;Lim, Seo-Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.107-114
    • /
    • 2018
  • Purpose : This study is to develop walls using wall recording technology applied on roofs to prevent fire spread in traditional markets. Method : The spray head installed on the developed wall was designed so that the fire does not spread to adjacent buildings after being used for plants. In addition, a spray head was attached to the upper section and some sections for the growth of plants planted on the wall to prevent the spread of fire. Results : These technologies suggested the development of walls that can be installed at the upper level of buildings, such as traditional markets, and separate isolation facilities were not necessary because they are integrated with structures and sprinklers. In addition, sprinklers can perform both the plant spray and fire spread prevention functions. It is believed that this is the only alternative technology proposed in Korea to prevent the spread of fire. Conclusion : In this study, the wall design, designed directly to derive the quantitative performance of the fire spread reduction effect, demonstrated the fire suppression method of the wall system, the durability of the wall itself, and the flame retardability performance.

A Study on Measures to Improve Smoke Control Performance in Case of Fire in a Clean room as an LCD Manufacturing Process (LCD 제조공정 클린룸의 화재시 CFD를 이용한 제연성능 개선대책에 관한 연구)

  • Son, Bong-Sei;Jang, Chan-Hee
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.41-47
    • /
    • 2012
  • As a core process in the manufacture of state-of-the-art industrial technologies such as semiconductor and LCD, a clean room is the most important process which can affect the performance and quality of products drastically. Nevertheless, scientific research on comprehensive safety measures from a fire protection standpoint is not being carried out in Korea. This study aims to derive measures to improve smoke control systems by identifying performance and problems of smoke systems installed in clean rooms as an LCD manufacturing process and analyzing fire and evacuation simulations considering several scenarios. As a result of analysis of fires and smoke in a clean roomas an LCD manufacturing process, it is found to be necessary to stop air handling units through interlocking in case of a fire and exhaust smoke out of the room through the top of FAB in consideration of buoyancy of smoke. It is also found to be necessary to install quick response sprinkler heads and accessories to accelerate the response time, because the heat-accumulating performance of sprinkler heads decreases in this application. Despite its low density of dwelling due to the automation process, clean room is characterized by an array of complex production equipment and working environment requiring dustproof clothes, which makes it difficult to acquire evacuation safety performance. Thus, thorough control of danger factors in processes and periodic education and training are required. It is also necessary to establish a level of domestic technologies equivalent to the level of standards of advanced countries in fire protection.

A study on the standard of effective fire facilities for the Atrium (아트리움 공간의 효과적인 방화설비 기준연구)

  • Choi, Don-Mook;Kim, Jae-Woon;Min, Se-Hong
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.6 no.1
    • /
    • pp.49-66
    • /
    • 2005
  • The purpose of this study is to present reference data to be considered in designing fur the fire safety of atrium buildings. This study deals with the characteristics of atrium buildings in the fire safety aspect, analysis of fire examples and foreign fire codes of atrium space. And con-crete factors to be consigning fur the fire facilities of atrium buildings are presented. Recently many atrium spaces have been built in Korea. They provide new experience of space with resident and pedestrians. However, because of the lack of knowledge in design principle and disaster prevention, large loss of lives is expected in an emergency situation. cion. Therefore safety ensuring from the case is urgently needed. The following is the summary on the standard of effective fire facilities for the atrium. 1. The smoke control. inside atrium must use the machine ventilation in the atrium. 2. It is desirable to divide the section between atrium and nearby living room by anti-smoke screen in order to prevent damage by smoke when fire break out. 3. It is desirable to instill an excellent fire detector like infrared light detector as a replacement of old one. 4. It is desirable to transfer from closed operating sprinkler to fire-cycle sprinkler equipment or ablative sprinkler when the height is lower than 20m.

  • PDF

A Study on the Seismic Design for Water Exthinguishing Piping Systems (수계 파이프 시스템의 내진설계에 관한 연구)

  • Lee, Dong-Myung
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.10-15
    • /
    • 2008
  • In this study, seismic design in sprinkler head pipeline of water extinguishing system has been carried out. This study describes a generation of artificial earthquake wave compatible with seismic design spectrum, and also analyzed the dynamic response spectra by the simulated earthquake motion. This study constructed powerful engineering base for seismic design, and presented seismic design techniques of water and gas extinguishing piping system. Also, this study readied basis that can apply seismic design and performance estimation of fire fighting system and performance rating as well as pipeline of water extinguishing system from result of this research. Hereafter, if additional research by earthquake magnitude and ground kind is approached, reliance elevation, safety raising and performance based design of fire fighting system see to achieve.

A Study on the Application of Hydraulic Calculations considering the Corrosion Coefficient of Steel Piping for Fire Protection (소방용 강관배관 부식계수를 고려한 수리계산 적용방안에 관한 연구)

  • Mun, Chul-Hwan;Kang, Ho-Jung;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.4
    • /
    • pp.69-77
    • /
    • 2020
  • With the recent enlargement and complication of buildings, damage caused by the incidents of fires breaking out are escalating. Consequently, the use of sprinkler facilities is increasing among water-based fire extinguishing systems. Piping materials used in fire prevention systems include carbon steel (for general or pressure pipeline), CPVC, copper, and stainless-steel. Among these, the steel and CPVC pipes, which are commonly employed in fire prevention, were considered for testing the reliability of the water-based systems. This analysis was performed using the PIPENET software to perform hydraulic calculations in order to examine the flow and pressure at the terminal head when the corrosion coefficient was applied; this coefficient was applied considering the aging of pipes. Assuming a uniform pipe diameter in the steel pipes, the rated flow in the pump installed on the first floor of the basement was reduced by over 10% after 20 years had passed (C value of 90); moreover, the reduction in pressure and flow at its terminal head exceeded 30% and 16.5%, respectively. The results indicate that it is difficult to ensure the reliability of these fire prevention facilities. Furthermore, according to our estimation, considering 30 years had passed (C value of 80), the rated flow of the pump was reduced by over 15%, and the corresponding reduction in pressure and flow at its terminal head exceeded 42% and 24%, respectively.

An Experimental Study of Sprinkler system for Sandwich Panel Wall Protection (샌드위치패널 벽면보호용 스프링클러설비 적용 실험)

  • Seo, Dong-Hun;Kim, Won-Hyung;Kim, Jong-Hoon;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.37-43
    • /
    • 2017
  • Domestic sandwich panel buildings are widely used on walls and roofs of factories and warehouse facilities. Factory and warehouse facilities have high fire load and rapid spread of fire due to their use characteristics, leading to large fires. Due to the characteristics of materials, walls and roofs are collapsed, resulting in life damage and property damage. In this regard, this study examined domestic and international standards of sprinkler facilities to prevent ignition of sandwich panel walls. Also, in order to check whether the fire was prevented by installing the head on the wall of the sandwich panel, the fire test was carried out with 10 cm, 60 cm, and 120 cm from the wall along the sprinkler head installation standard of domestic fire safety standards. As a result of the fire test, it was confirmed that the sandwich panel was prevented from igniting when the head of water pressure 0.1 MPa and water quantity K-80 was installed. According to the separation distance, it was impossible to measure the temperature at 10 cm, but at 60 cm, At the maximum temperature of $525^{\circ}C$ and 120 cm, the maximum temperature of the wall of the sandwich panel was measured as $276^{\circ}C$. As a result of the fire test, considering the fire point of 450 degrees Celsius in the fire test of the sandwich panel, the distance from the sandwich panel wall to the combustible is more than 120 cm.

An Experimental Study on the Extinguishing Performance of Sprinkler Heads according to Discharge Coefficient (스프링클러 헤드의 방수상수에 따른 소화성능에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Chang Sub
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.2
    • /
    • pp.32-38
    • /
    • 2018
  • The sprinkler system is a basic fire extinguishing system widely used, but there is a lack of quantitative assessment of its performance. In this study, to evaluate the fire extinguishing performance of the sprinkler head according to the discharge coefficients, experiments were conducted. Experimental sprinkler heads were selected with heads having K50, K80 and K115 water discharge coefficients, and the fire source was assumed to be an indoor fire in Class A Model 1. As experimental results, the time required for the fire chamber to cool down to $200^{\circ}C$ was 26 seconds for the K115 head, 414 seconds for the K80 head, and 481 seconds for the K50 head, so the cooling time of the K115 head was decreased by 94.5% compared to K50 head. In the case of restoring the oxygen concentration to 15%, the K115 head did not decrease below the oxygen concentration of 15%, and the K80 head took 145 seconds and the K50 head took 484 seconds. The lowest oxygen concentration in the fire chamber was 16.1% for the K115 head, 14.33% for the K80 head, and 11.28% for the K50 head, indicating that the K115 head was superior to the K80 and K50 heads by 13.1% and 43.7%, respectively. As the experimental results show, there is big difference in the extinguishing performance depending on the discharge coefficients of the sprinkler head. Therefore, in designing the sprinkler system, the discharge coefficients of the sprinkler head should be selected considering the heat release rate at the installation site and the fire extinguishing characteristics of sprinkler head.

An Experimental Study on Droplet Size according to Discharge Coefficient of Sprinkler Head (스프링클러 헤드의 방수상수에 따른 물방울 크기에 관한 실험적 연구)

  • Hur, Min Noung;Shin, Changsub
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.16-21
    • /
    • 2017
  • The sprinkler system is a basic fire extinguishing system that uses water as an extinguishing agent. In order to evaluate the fire extinguishing performance of the sprinkler system, information such as the discharge angle, discharge speed, discharge pressure, flow rate, and water droplet size of the installed head are required. However, there is a lack of research on droplets size compared to other requirements. In this study, to evaluate the extinguishing characteristics of sprinkler system, the droplet size distribution was measured for various types of sprinkler heads actually used. The size of the droplet was measured using laser diffraction method. The 50% cumulative volume distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the distribution ($D_{v50}$) according to discharge coefficient(K factor) was $540{\mu}m{\sim}695{\mu}m$ for K50, $542{\mu}m{\sim}1,192{\mu}m$ for K80, $980{\mu}m{\sim}1,223{\mu}m$ for K115 and $1,188{\mu}m{\sim}1,234{\mu}m$ for K202. Based on the measured results, the vaeiance of the droplet particle distribution and the Rosin-Rammler index value are presented. As a result of the fire simulation with FDS, it was confirmed that the performance difference occurs according to the water droplet size distribution even when the same amount of water is used. Therefore, the extinguishing performance of the sprinkler system should be evaluated considering the droplet size distribution according to the sprinkler head type.

Study on the Operation Characteristics of Heat Detectors through Fire and Wind Tunnel Experiment (풍동실험과 화재실험을 통한 열감지기의 동작특성에 관한 연구)

  • Ryu, Hocheol;Kim, Doohyun
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.203-209
    • /
    • 2015
  • The heat detector detects heat in the fire and is an important core element of the automatic fire alarm system used generally for every fire prevention objects. The heat detector is distinguished in spot type and spread type and in spot type, there are differential and thermistor types. These heat detectors give a great influence on the loss of people and property according to the sensitivity of response such as operation time and operation temperature in actual fire and in overseas people apply it for the development of products that can be operated in the early stage of fire including certification, quality management, and comparison standard by introducing response time index through the theory of heat balance that considers the heat loss and ventilation tests. In Korea, the response time index is introduced and used in the head of sprinkler products, but it is not applied to the heat detector at present. It is necessary to introduce the response time index that shows the sensitivity of response of the heat detector the installation standard for the heat detector that the response time index is applied should be different according to the fire weight, danger degree of fire, and shape of buildings. Through this study, it tries to help reduce lives and property of people through the swift warning by installing detectors suitable for the building structure.