• Title/Summary/Keyword: 스프링강성

Search Result 256, Processing Time 0.024 seconds

Development of Buckling Restrained Brace Laterally Supported by Semicircular Springs (반원형 스프링으로 횡지지된 건식형 좌굴방지가새의 개발)

  • Park, Keum Sung;Lee, Sang Sup;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.549-558
    • /
    • 2014
  • Buckling restrained braces(BRBs) developed as a seismic protection element, hysteretic damper, have been investigated in America and Japan mainly. BRBs are composed of a steel core and concrete-filled steel casing. It is one of the major causes of drop in productivity to fill the steel casing with concrete. To improve this problem, the BRB is introduced in which the steel core is restrained with a pair of semicircular springs. In this paper, the numerical and analytical investigation about the desirable configuration for a semicircular spring is presented. Firstly, the stiffness and strength of semicircular spring is determined theoretically to buckle into a very high-order modes. Then, the required stiffness and strength are calculated under the practical design conditions and considered as reference values to find a proper configuration. The material strength and thickness of semicircular spring are chose from the finite element analysis for 5 semicircular springs with varying height. Finally, the nonlinear buckling analysis of BRB with proper semicircular springs shows that the bucking strength of the whole BRB is very similar to the strength of steel core with length between semicircular springs.

Definition and Application of Equivalent Load for Stiffness (강성등가하중의 정의와 응용)

  • Kim Chee-Kyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.303-312
    • /
    • 2006
  • This paper presents the equivalent nodal load for the element stiffness which represents the influence of the stiffness change such as the addition of elements, the deletion of elements, and/or the partial change of element stiffness. The reanalysis of structure using the equivalent load improves the efficiency very much because the inverse of the structural stiffness matrix, which needs a large amount of computation to calculate, is reused in the reanalysis. In this paper, the concept of the equivalent load for the element stiffness is described and some numerical examples are provided to verify it.

Analysis of Influence on Derailment due to Primary Spring Aging (축상스프링 노화에 따른 탈선안전도 영향 분석)

  • Hur, Hyunmoo;Shin, Yujeong;You, Wonhee;Park, Joonhyuk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.320-328
    • /
    • 2017
  • In order to analyze the influence on derailment safety according to the aging of primary rubber springs widely applied to railway vehicles, characteristic tests were carried out on aged primary rubber spring samples. To analyze the effect of primary rubber spring aging on derailment safety, a vehicle dynamic analysis was carried out. The results of the vertical characteristics test for the rubber spring specimens with 17 years of service life revealed that the displacement restoration function was degraded due to rubber aging and the spring stiffness significantly increased. The results of the running dynamic analysis simulating the twist track running in accordance with the EN14363 standard, compared with the normal vehicle model (Case 1), showed that the derailment coefficient and the wheel unloading of the vehicle model (Case 2) using the aging primary spring characteristic increased, and the derailment safety was degraded. IN particular, it was found that the derailment safety due to the reduction of the wheel load is weak in the transient section where a steep slope change occurs.

A Study for Basic Durability Assessment of Shale Shaker (셰일 셰이커 기초 내구성 평가에 관한 연구)

  • Oh, Jung-Soo;Kim, Sung-Min;Whang, Jong-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.296-302
    • /
    • 2019
  • In this study, a basic durability assessment was performed by selecting the main part of a trial product of a shale shaker, which is one of components for a mud circular system. For a preliminary durability assessment, it was assumed that the lifetime of the bearing for the vibrator motor and the stiffness of the support spring are affected by the vibration when the motor operates continuously. In the case of the motor, the initial p-p level was 0.72 g, but after 100 hours of operation, the p-p level was rapidly increased to 1.26 g. Bearing defects could be estimated through ball defect frequency analysis. In the case of the spring, the stiffness of the spring was reduced by approximately 3.78% at the end of 2,000 hours of the fatigue-durability test by applying excitation conditions to shale shaker body. In the future, we will analyze the influence of the particle removal efficiency of the shale shaker.

Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring Operating Mechanism for the Circuit Breaker (회로차단기용 스프링조작기의 기구동역학 해석을 위한 스프링모델링 기법 연구)

  • Sohn, Jeong-Hyun;Lee, Seung-Kyu;Kim, Seung-Oh;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.777-783
    • /
    • 2007
  • Since the performance of the circuit breaker mainly depends on the spring operating mechanism, the analysis of the spring operating mechanism is required. The spring, especially closing spring, stores the deformation energy due to the compression and then accelerates the big loads rapidly in the circuit breaker. To accurately carry out the kinematic and dynamic analysis of the circuit breaker, the precise modeling of the spring behavior is necessary. In this paper, the static stiffness of the spring is captured by using the tester. A simple mechanism similar to the spring operating mechanism was designed to generate the release motion of the spring. A high speed camera was used to capture the behavior of the spring. Three types of spring models such as a linear spring model, modal spring model, and nodal spring model are suggested and compared with the experimental results.

Realistic Cloth Simulation using Plastic Deformation (소성변형특성을 이용한 사실적인 직물 시뮬레이션)

  • Oh Dong-Hoon;Jung Moon-Ryul;Song Chang-Geun;Lee Jong-Wan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.3
    • /
    • pp.208-217
    • /
    • 2006
  • This paper presents a cloth simulation technique that implements plastic deformation. Plasticity is the property that material does not restore completely to the original state once deformed, in contrast to elasticity. We model cloth using a particle model, and posit two kinds of connections between particles, i.e. the sequential connections between immediate neighbors, and the interlaced connections between every other neighbors. The sequential connections represent the compression and tension of cloth, and the interlaced connections the bending in cloth. The sequential connections are modeled by elastic springs, and the interlaced connections by elastic or plastic spring depending on the amount of the current deformation of the connections. Our model is obtained by adding plastic springs to the existing elastic particle model of cloth. Using the new model, we have been able to simulate bending wrinkles, permanently deformed wrinkles, and small wrinkles widely distributed over cloth. When constructing elastic and plastic spring models for sequential and interlaced connections, we took pain to prevent the stiffness matrix of the whole cloth system from being indefinite, in order to help achieve physical stability of the cloth motion equation and to improve the effectiveness of the numerical method.

Optimal Methodology of a Composite Leaf Spring with a Multipurpose Small Commercial Vans (다목적 소형 승합차 복합재 판 스프링의 적층 최적화 기법)

  • Ahn, Sang Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.243-250
    • /
    • 2018
  • In this paper, design technique using genetic algorithms(GA) for design optimization of composite leaf springs is presented here. After the initial design has been validated by the car plate spring as a finite element model, the genetic algorithm suggests the process of optimizing the number of layers of composite materials and their angles. Through optimization process, the weight reduction process of leaf springs and the number of repetitions are compared to the existing algorithm results. The safety margin is calculated by organizing a finite element model to verify the integrity of the structure by applying an additive sequence optimized through the genetic algorithm to the structure. When GA is applied, layer thickness and layer angle of complex leaf springs have been obtained, which contributes to the achievement of minimum weight with appropriate strength and stiffness. A reduction of 65.6% original weight is reached when a leaf steel spring is replaced with a leaf composite spring under identical requirement of design parameters and optimization.

Analysis of rear suspension using airspring (공기스프링 현가장치 성능해석)

  • Tak, tae-oh;Kim, kum-Chul
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.31-42
    • /
    • 1999
  • This paper presents a method for evaluating the performance of a leaf spring suspension and an air spring suspension systems for trucks in terms of ride and handling. Leaf springs, which generally have non-linear progressive force-deflection characteristics, are modeled using beam and contact elements. The leaf spring analysis model shows good correlation with experimental results. Each component of an air spring suspension system, which is a single leaf, air spring, height control valve, compressor and linkages, is modeled appropriately. Non-linear characteristics of air spring are accounted for using the measured data, and pressure and volume relations for height control system is also considered. The wheel rate of the air suspension is taken lower but roll stiffness is taken higher than those of leaf springs to improve ride and handling performance, which is verified through driving simulations.

  • PDF