• Title/Summary/Keyword: 스프링강선

Search Result 2, Processing Time 0.014 seconds

Fatigue Characteristics of Tension Spring for LCD Monitor Hinge (LCD 모니터 힌지용 인장 스프링의 피로특성)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Kim, Ki-Man;Byun, Yong-Kun;Yang, Seung-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.13-19
    • /
    • 2007
  • The spring is an important mechanical parts to improve the functions of precision machines, automobiles, ships, industrial machines, and IT devices etc.. The hinge mechanism for LCD monitors is very important to support and maintain the proper position of monitor panel, and the tension spring which is a major parts of hinge mechanism plays a significant roll to provide the supporting force positioning the monitor panel. In this paper, an analysis and experiment were carried out to investigate the fatigue characteristics of the tension spring of hinge mechanism, such as hardness test, fatigue test and fractography analysis. As a result of this study the SWPB with heat treatment and shot peening was found to have the optimal design conditions of tension spring for LCD monitor hinge mechanism.

  • PDF

Study of Plastic Deformation of Steel Wire for Weight Reduction of Automotive Weather Strip (자동차 웨더스트립 심재 경량화를 위한 강선(Steel Wire)의 소성변형 연구)

  • Choi, Bosung;Lee, Dugyoung;Jin, Chankyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.82-86
    • /
    • 2013
  • The automotive weather strip has the functions isolating of dust, water, noise and vibration from outside. The core of weather strip is made of steel with stiffness. By using the wire formed as the core of weather strip, weight can be reduced as much as 35% by comparing with existing steel core. For this reason, forming wire is necessary to keep the zigzag shape as it is. The deformation which is occurred during forming process can be predicted and it can be used in case of manufacturing dies through CAE. In this paper, rolling process conditions are deduced and the springback amount is predicted after rolling process by using the simulation. The springback amount of product is measured by using optical microscope, and measurement result is compared with the simulation result of springback as the same condition. The suitable gap between dies to compensate springback after rolling process is predicted through simulation and it is used for manufacturing dies.