• Title/Summary/Keyword: 스프레이 특성

Search Result 156, Processing Time 0.026 seconds

Mechanical and Repair Performance of Sprayed Ductile Fiber Reinforced Cememtitious Composite(ECC) (습식스프레이공법으로 타설된 고인성 섬유보강 모르타르(ECC)의 역학적 특성과 보수 성능)

  • Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.462-469
    • /
    • 2003
  • This paper presents an experimental study on the potential durability enhancement of infrastructures repaired by a sprayed high ductile fiber-reinforced cementitious composite (ECC). For this study, a PVA-ECC which exhibits sprayable properties in the fresh state and tensile strain-hardening behavior in hardened state was sprayed and tested. The experimental results show that the sprayed ECC exhibits mechanical properties with strain capacity comparable to the cast ECC with the same mix design. During loading, the crack widths of ECC are tightly controlled with an average of 30${\mu}m$. It is also revealed that when sprayed ECC is used as a repair material, ductility represented by deformation capacity at peak load of repaired beams in flexure are obviously increased in comparison to those of commercial prepackaged mortar (PM) repaired beams. In addition to high delamination resistance, the significant enhancement of energy absorption capacity and crack width control in ECC repair system suggest that sprayed ECC can be effective in extending the service life of rehabilitated infrastructures.

스프레이 코팅으로 제작된 유연 투명 히터용 ATO 나노입자-은 네트워크 하이브리드 투명 전극 연구

  • Kim, Jae-Gyeong;Sin, Hae-In;Kim, Han-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.276.1-276.1
    • /
    • 2016
  • 본 연구에서는 차세대 유연 투명 히터 (Flexible and transparent heater) 제작을 위한 ATO 나노입자-은 네트워크 하이브리드 투명 전극의 특성을 연구하였다. 최적화된 은 네트워크 (Self-assembled Ag network) 투명 전극 상에 20-30 nm의 직경을 가지는 ATO (Sb-doped $SnO_2$) 나노입자를 스프레이 방식으로 상압, 상온에서 코팅하여 인쇄형 ATO-은 네트워크 하이브리드 투명 전극을 구현하였다. 스프레이로 코팅된 투명 ATO 나노 입자는 은 네트워크 전극의 빈 공간을 매워 줌으로써 은 네트워크 간의 연결성 및 표면 조도를 낮춰주어 유연 투명 히터 작동 시 전류의 집중 현상을 막아줄 수 있다. ATO-은 네트워크 하이브리드 투명 전극의 최적화를 위해 스프레이 횟수에 따른 하이브리드 투명 전극의 전기적, 광학적, 표면 특성을 분석하였으며, 최적의 조건에서 14 Ohm/square의 면저항과 66%의 투과도를 가지는 하이브리드 투명 전극을 구현하였다. 또한 FESEM 분석을 통해 ATO-은 네트워크 하이브리드 전극의 표면 및 계면 구조를 연구하고 ATO 코팅이 은 네트워크 전극의 특성에 미치는 영향을 규명하였다. 최적화된 ATO-은 네트워크 하이브리드 투명 전극을 이용하여 유연 투명 히터를 제작하고 전압에 따른 히터의 온도의 변화를 측정하여 차세대 유연 투명 히터용 투명 전극으로 인쇄기반 ATO-은 네트워크 하이브리드 투명 전극의 가능성을 확인하였다.

  • PDF

A study on Resistance Performance of the High-speed Planing Craft with Spray Strip (Spray Strip부착에 따른 고속 활주형선 저항특성 연구)

  • Park, Chung-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.759-764
    • /
    • 2008
  • The planing craft is designed specifically to achieve comparatively high speed on the surface of the water. Most of planing crafts have installed the spray strip in decreasing of wave impaction and improving motion performance of rolling and pitching et al. It is known to reduce the spray and frictional resistance by the effect of lift and improvement of wave profile in high speed. In this paper, the high speed planing crafts with & without spray strip in bottom were performed to compare the resistance performance by model-test. In conclusion, the high speed planing crafts with spray strip in bottom was proved to effect of the resistance decrement of $3.0{\sim}5.0%$.

FULLY SPRAY-COATED INVERTED ORGANIC SOLAR CELLS (전 공정 스프레이 적용 유기태양전지 제조)

  • Gang, Yong-Jin;Kim, Chang-Su;Kim, Jong-Guk;Kim, Do-Geun;Kim, Su-Hyeong;Gang, Jae-Uk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.160-161
    • /
    • 2011
  • 본 연구에서는 대면적 유기태양전지 셀의 제작이 유리하며 공정비용이 저렴한 스프레이 공법을 이용하여 역구조 형태의 유기태양전지의 모든 공정에 적용하여 제작 및 평가했다. 스프레이 코팅 공정은 전자 수송층 ZnO층을 코팅 후 P3HT와 PCBM를 블렌딩 하여 만든 광활성층을 코팅하였다. 그리고 마지막으로 정공 전달층인 PEDOT:PSS층을 코팅한 후 메탈전극을 증착하여 역구조의 유기 태양전지을 제작하였다. 스프레이 코팅 공정으로 만든 유기태양전지는 현재 가장 많이 사용하고 있는 스핀 코팅 공정과 비교 시 유사한 특성을 나타내었다. 스프레이 공정으로 만든 유기 태양전지는 $0.38cm^2$의 면적에서 3.20%의 광변환 효율을 얻었다.

  • PDF

A Study on the Specialized Mix Design of Mine Sprayed Concrete Using Industrial Byproducts (산업부산물(産業副産物)을 이용(利用)한 광산(鑛山) 스프레이 콘크리트의 물성연구(物性硏究))

  • Ma, Sang-Joon
    • Resources Recycling
    • /
    • v.22 no.3
    • /
    • pp.18-27
    • /
    • 2013
  • In this study, it was developed eco-friendly mix design of mine sprayed concrete, which satisfies both the stability and economics by mixing the industrial in cement, for development of the mine sprayed concrete and recycling of industrial. From this research, it is found that mixing of mineral admixture is effective on strength enhancement. Also, it is considered that designed mixing ratio of sprayed concrete using industrial byproducts should be applied to the field through field test.

Effect of Water Temperature on Heat Transfer Characteristic of Spray Cooling on Hot Steel Plate (냉각수온 효과에 따른 고온 강판의 스프레이 냉각 열전달 특성 연구)

  • Lee, Jung-Ho;Yu, Cheong-Hwan;Park, Sang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.503-511
    • /
    • 2011
  • Water spray cooling is a significant technology for cooling of materials from high-temperature up to $900^{\circ}C$. The effects of cooling water temperature on spray cooling are mainly provided for hot steel plate cooling applications in this study. The heat flux measurements are introduced by a novel experimental technique that has a function of heat flux gauge in which test block assemblies are used to measure the heat flux distribution on the surface. The spray is produced by a fullcone nozzle and experiments are performed at fixed water impact density of G and fixed nozzle-totarget spacing. The results show that effects of water temperature on forced boiling heat transfer characteristics are presented for five different water temperatures between 5 to $45^{\circ}C$. The local heat flux curves and heat transfer coefficients are also provided to a benchmark data for the actual spray cooling of hot steel plate cooling applications.

Superhydrophobic/Superoleophobic Spray Coatings based on Photocurable Polyurethane Acrylate and Silica Nanoparticles (UV경화형 폴리우레탄 아크릴레이트와 실리카 나노입자를 이용한 초발수 및 초발유 스프레이 코팅)

  • Kim, Su Hyun;Lee, Seung Goo
    • Journal of Adhesion and Interface
    • /
    • v.21 no.2
    • /
    • pp.58-64
    • /
    • 2020
  • This paper describes a simple approach for preparing a superhydrophobic and superoleophobic coating via spraying the mixture of UV-curable polyurethane acrylate and silica nanoparticles dispersed in a solvent. The prepared surface structures can be controlled by changing the types of solvents, the concentration of the polymer, and the amount of spraying. Superhydrophobicity and superoleophobicity are quantified by measuring the contact angle of water and oil, respectively. We also demonstrate the mechanism of spray coating with maximized superhydrophobicity and superoleophobicity through the analysis of re-entrant surface structures. At the appropriate amount and the composition of mixed solutions, the contact angle hysteresis of water and oil on the prepared surface is less than 2° and 30°, respectively. In addition, it shows excellent water-repellent and oil-repellent properties such that the oil droplet bounces off the surface.

Development and Analysis of Graphene Oxide Thin Film Coating (산화그래핀 박막 코팅기술 개발 및 특성평가)

  • Cheon, Yeong Ah;Nam, Jin-Su;Son, Kyung Soo;Im, Young Tae;Ahn, Won Kee;Chung, Bong Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, we synthesized graphene oxide and developed novel spin-spray coating technology. The graphene oxide thin film was uniformly coated on amine-functionalized glass surfaces using spin-spray coating technology. We also stacked up to four layers of graphene oxide on glass substrates in a uniform manner. From the results, we infer that this spin-spray coating of graphene oxide thin film could be a powerful tool for various electronic display coating applications.

Dispersibility and Flexural Toughness Evaluation of Fiber Reinforcement Cellular Sprayed Concrete by added Foam (기포를 혼입한 섬유보강 셀룰러 스프레이 콘크리트 공법의 분산성 및 휨인성 평가)

  • Lee, Kyeo-Re;Han, Seung-Yeon;Nam-Gung, Kyeong;Yun, Kyong-Ku
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4192-4200
    • /
    • 2015
  • In this paper, dispersibility of steel fiber is improved mixing with form for material development of protection and blast resistant structure sprayed concrete. And it is developed a high toughness cellular sprayed concrete material using steel fiber. Oversupply form for dispersibility improvement of steel fiber is mostly fade away through sprayed, finally it is satisfied with the proper mixing ratio under 3 % ~ 6 %. This is considered for compressive strength and flexural toughness. Test results of compressive strength showed superior strength capability in 28, 56 days, also flexural strength and flexural toughness is great. Then oversupply form is enhanced for dispersibility of steel fiber and I think that it did not cause decreasing of strength. But analysis results of pore structure through image analysis failed for a great spacing factor and specific surface area. This is largely measured in spacing factor because air content have a grate evaporation effect for sprayed.

Analysis of Temperature Distributions in Spray Coating Room (스프레이 코팅 룸의 온도분포 해석)

  • Kim, Nam Woong;Kim, Sung-Yong;Kim, Kug Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7667-7671
    • /
    • 2015
  • Recently, Zinc coating is often used with environment friendly features and high performance. Generally The coating temperature is one of main factors for determining coating thickness and coating ability, so the optimal coating temperature is strongly required. In this paper, the thermo-flow simulation considering the air flow inside the coating rooms for analyzing the temperature distributions of Zinc spray coating room was performed. Two spray coating rooms, preheating room and drying room were all modeled by SolidWorks program and the temperature distributions were analyzed by Flow simulation program. The analysis results were verified with the measured data by thermal image camera. The characteristics of temperature distributions of the first spray room and the second spray room were understood and the results showed that the temperatures of two spray coating room were low compared with the target temperature $25^{\circ}C$. To the exclusion of heater addition, the simulation with all the same conditions exclusive the exhaust fan was performed, which showed that the temperatures of the first and the second spray rooms increased by $6.2^{\circ}C$ and $5.8^{\circ}C$. This analysis can be applicable for designing a new spray coating room for improving performance.