• Title/Summary/Keyword: 스푸핑

Search Result 143, Processing Time 0.019 seconds

Design and Implementation of Blockchain Network Based on Domain Name System (블록체인 네트워크 기반의 도메인 네임 시스템 설계 및 구현)

  • Heo, Jae-Wook;Kim, Jeong-Ho;Jun, Moon-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.36-46
    • /
    • 2019
  • The number of hosts connected to the Internet has increased dramatically, introducing the Domain Name System(DNS) in 1984. DNS is now an important key point for all users of the Internet by allowing them to use a convenient character address without memorizing a series of numbers of complex IP address. However, relative to the importance of DNS, there still exist many problems such as the authorization allocation issue, the disputes over public registration, security vulnerability such as DNS cache poisoning, DNS spoofing, man-in-the-middle attack, DNS amplification attack, and the need for many domain names in the age of hyper-connected networks. In this paper, to effectively improve these problems of existing DNS, we proposed a method of implementing DNS using distributed ledger technology, blockchain, and implemented using a Ethereum-based platform. In addition, the qualitative analysis performance comparative evaluation of the existing domain name registration and domain name server was conducted, and conducted security assessments on the proposed system to improve security problem of existing DNS. In conclusion, it was shown that DNS services could be provided high security and high efficiently using blockchain.

An Attack Origin Detection Mechanism in IP Traceback Using Marking Algorithm (마킹 알고리듬 기반 IP 역추적에서의 공격 근원지 발견 기법)

  • 김병룡;김수덕;김유성;김기창
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • Recently, the number of internet service companies is increasing and so is the number of malicious attackers. Damage such as distrust about credit and instability of the service by these attacks may influence us fatally as it makes companies image failing down. One of the frequent and fatal attacks is DoS(Denial-of-Service). Because the attacker performs IP spoofing for hiding his location in DoS attack it is hard to get an exact location of the attacker from source IP address only. and even if the system recovers from the attack successfully, if attack origin has not been identified, we have to consider the possibility that there may be another attack again in near future by the same attacker. This study suggests to find the attack origin through MAC address marking of the attack origin. It is based on an IP trace algorithm, called Marking Algorithm. It modifies the Martins Algorithm so that we can convey the MAC address of the intervening routers, and as a result it can trace the exact IP address of the original attacker. To improve the detection time, our algorithm also contains a technique to improve the packet arrival rate. By adjusting marking probability according to the distance from the packet origin we were able to decrease the number of needed packets to traceback the IP address.

Secure Mutual Authentication Protocol for RFID System without Online Back-End-Database (온라인 백-엔드-데이터베이스가 없는 안전한 RFID 상호 인증 프로토콜)

  • Won, Tae-Youn;Yu, Young-Jun;Chun, Ji-Young;Byun, Jin-Wook;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.1
    • /
    • pp.63-72
    • /
    • 2010
  • RFID is one of useful identification technology in ubiquitous environments which can be a replacement of bar code. RFID is basically consisted of tag, reader, which is for perception of the tag, and back-end-database for saving the information of tags. Although the usage of mobile readers in cellular phone or PDA increases, related studies are not enough to be secure for practical environments. There are many factors for using mobile leaders, instead of static leaders. In mobile reader environments, before constructing the secure protocol, we must consider these problems: 1) easy to lose the mobile reader 2) hard to keep the connection with back-end-database because of communication obstacle, the limitation of communication range, and so on. To find the solution against those problems, Han et al. suggest RFID mutual authentication protocol without back-end-database environment. However Han et al.'s protocol is able to be traced tag location by using eavesdropping, spoofing, and replay attack. Passive tag based on low cost is required lots of communication unsuitably. Hence, we analyze some vulnerabilities of Han et al.'s protocol and suggest RFID mutual authentication protocol without online back-end-database in aspect of efficiency and security.