• Title/Summary/Keyword: 스펙트럴 기법

Search Result 63, Processing Time 0.018 seconds

An Experimental Study on Smoothness Regularized LDA in Hyperspectral Data Classification (하이퍼스펙트럴 데이터 분류에서의 평탄도 LDA 규칙화 기법의 실험적 분석)

  • Park, Lae-Jeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.534-540
    • /
    • 2010
  • High dimensionality and highly correlated features are the major characteristics of hyperspectral data. Linear projections such as LDA and its variants have been used in extracting low-dimensional features from high-dimensional spectral data. Regularization of LDA has been introduced to alleviate the overfitting that often occurs in a small-sized training data set and leads to poor generalization performance. Among them, a smoothness regularized LDA seems to be effective in the feature extraction for hyperspectral data due to its capability of utilizing the high correlatedness. This paper studies the performance of the regularized LDA in hyperspectral data classification experimentally with varying conditions of the training data. In addition, a new dual smoothness regularized LDA is proposed and evaluated that makes use of both the spectral-domain and spatial-domain correlations between neighboring pixels.

Classification of Hyperspectral Images Using Spectral Mutual Information (분광 상호정보를 이용한 하이퍼스펙트럴 영상분류)

  • Byun, Young-Gi;Eo, Yang-Dam;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.33-39
    • /
    • 2007
  • Hyperspectral remote sensing data contain plenty of information about objects, which makes object classification more precise. In this paper, we proposed a new spectral similarity measure, called Spectral Mutual Information (SMI) for hyperspectral image classification problem. It is derived from the concept of mutual information arising in information theory and can be used to measure the statistical dependency between spectra. SMI views each pixel spectrum as a random variable and classifies image by measuring the similarity between two spectra form analogy mutual information. The proposed SMI was tested to evaluate its effectiveness. The evaluation was done by comparing the results of preexisting classification method (SAM, SSV). The evaluation results showed the proposed approach has a good potential in the classification of hyperspectral images.

  • PDF

Spectral quality compensation of KOMPSAT-2 fused image by using induction technique (영상 유도 기법을 통한 KOMPSA를-2 융합영상의 분광정보 보정)

  • Choi, Jae-Wan;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.186-189
    • /
    • 2009
  • KOMPSAT-2 고해상도 위성영상이 제공됨에 따라, 국내에서도 고해상도 위성영상을 활용한 다양한 연구 및 활용 사례가 증대되고 있다. KOMPSAT-2는 높은 공간해상도의 흑백영상과 멀티스펙트럴 영상을 동시에 제공하고 있는데, 개체 추출 및 고해상도의 토지 피복도 생성, 영상의 시각화를 위한 고해상도 멀티스펙트럴 영상 취득이 주요한 실정이다. 따라서 서로 다른 공간, 분광해 상도를 가지는 센서 자료를 이용하여 두 개의 장점을 모두 가지는 영상으로 재구성하는 영상융합은 원격탐사분야에서 중요한 연구분야이다. 이를 위해 다양한 영상융합기법이 연구되었지만, 대부분의 알고리즘들이 융합 후에 원 멀티스펙트럴 영상의 분광정보를 왜곡시키는 문제점을 지니고 있다. 본 연구에서는 영상 유도기법을 이용하여 융합영상의 분광정보를 향상시키는 방법을 제안하였다. 원 멀티스펙트럴 영상과 해상도를 낮춘 융합영상과의 비교 분석을 통하여 융합영상의 공간해상도 왜곡은 최소한으로 줄이고 왜곡된 분광정보를 최대한 보정하였다. 다양한 알고리즘을 통해 얻은 KOMPSAT-2 융합 영상에 본 알고리즘을 적용한 결과, 분광정보 왜곡량이 기존의 융합결과에 비해 줄어든 것을 확인할 수 있었으며, 이러한 결과는 다양한 응용분야에 활용될 수 있을 것이다.

  • PDF

Hyperspectral Image Fusion Algorithm Based on Two-Stage Spectral Unmixing Method (2단계 분광혼합기법 기반의 하이퍼스펙트럴 영상융합 알고리즘)

  • Choi, Jae-Wan;Kim, Dae-Sung;Lee, Byoung-Kil;Yu, Ki-Yun;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.4
    • /
    • pp.295-304
    • /
    • 2006
  • Image fusion is defined as making new image by merging two or more images using special algorithms. In case of remote sensing, it means fusing multispectral low-resolution remotely sensed image with panchromatic high-resolution image. Generally, hyperspectral image fusion is accomplished by utilizing fusion technique of multispectral imagery or spectral unmixing model. But, the former may distort spectral information and the latter needs endmember data or additional data, and has a problem with not preserving spatial information well. This study proposes a new algorithm based on two stage spectral unmixing model for preserving hyperspectral image's spectral information. The proposed fusion technique is implemented and tested using Hyperion and ALI images. it is shown to work well on maintaining more spatial/spectral information than the PCA/GS fusion algorithms.

Efficient Variable Dimension Quantization of Harmonic Magnitude (효율적인 가변차원 하모닉 크기 양자화기법)

  • 신경진;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.47-54
    • /
    • 2001
  • In this paper, we present a variable dimension vector quantization for spectral magnitudes. Espectially, spectral magnitudes of the Harmonic coder, need variable dimension quantizer because those are not fixed dimension. So, this paper present efficient quantization methods. These methods use variable Discrete Cosine Transform(DCT) for spectral magnitude parameters and NSTVQ which is combined odd/even, split and multi-stage structure, proposed quantization methods use Spectral Distortion(SD) for performance measure. Consequently, Multi-Stage Nonsquare Transform Vector Quantization(MSNSTVQ) is the best in performance measure.

  • PDF

Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery (항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.

A Study on the Spectral Fatigue Analysis for Offshore Structures (해양구조물의 스펙트럴 피로해석에 대한 사찰)

  • Jo, Gyu-Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.59-72
    • /
    • 1990
  • 본 논문은 해양 구조물에 대한 확률적 기법을 이용한 스펙트럴 피로해석 방법에 대하여 기술하고 있다. 환경조건 특히 파도 및 관련된 해상상태, 파도 스펙트럼에 대하여 조사하였다. 각종 공식을 이용한 응력 집중계수와 유한요소법을 이용한 응력 집중계수 산출 방법 및 피로수명에 대한 그 영향에 대하여 연구하고, S-N선도의 선택과 해상상태의 간략화 문제등에 관해서도 다루었다. 마지막으로 스펙트럴 피로해석 기법을 응용한 실제 피로해석 사례 연구를 통하여 본 방법의 유용성을 입증하였다.

  • PDF

A Study on the Hyperspectral Image Classification with the Iterative Self-Organizing Unsupervised Spectral Angle Classification (반복최적화 무감독 분광각 분류 기법을 이용한 하이퍼스펙트럴 영상 분류에 관한 연구)

  • Jo, Hyun-Gee;Kim, Dae-Sung;Kim, Yong-Il
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.41-45
    • /
    • 2005
  • 분광각(Spectral Angle)을 이용한 분류는 같은 종류의 지표 대상물의 분광 특성이 대기 및 지형적인 영향으로 인해 원점을 기준으로 선형적인 분포 모양을 가진다는 가정에 기초한 새로운 접근의 분류 방식이다. 최근 분광각을 이용한 무감독 분류에 대한 연구가 활발히 이루어지고 있으나, 원격탐사 데이터의 특성을 반영한 효과적인 무감독 분류에 대한 연구는 미진한 상태이다. 본 연구는 하이퍼스펙트럴 영상 분류에 있어서 기존 무감독 분광각 분류(USAC, Unsupervised Spectral Angle Classification) 연구에서 해결하지 못한 문제점들을 보완한 반복최적화 무감독 분광각 분류(ISOUSAC, Iterative Self-Organizing USAC) 기법을 제안하고 있다. 이를 위해, 무감독 분광각 분류에 적합한 각 분할(Angle Range Division) 기법을 적용하여 군집 초기 중심을 설정하였으며, 병합(Merge)과 분할(Split)를 통한 유동적인 군집 분석을 수행하였다. 결과를 통해, 제안된 알고리즘이 기존의 기법보다 수행 시간뿐 아니라 시각적인 면에서도 우수한 결과를 도출함을 확인할 수 있었다.

  • PDF

A Study on Feature Selection and Feature Extraction for Hyperspectral Image Classification Using Canonical Correlation Classifier (정준상관분류에 의한 하이퍼스펙트럴영상 분류에서 유효밴드 선정 및 추출에 관한 연구)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3D
    • /
    • pp.419-431
    • /
    • 2009
  • The core of this study is finding out the efficient band selection or extraction method discovering the optimal spectral bands when applying canonical correlation classifier (CCC) to hyperspectral data. The optimal efficient bands grounded on each separability decision technique are selected using Multispec$^{(C)}$ software developed by Purdue university of USA. Total 6 separability decision techniques are used, which are Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Noncovariance Bhattacharyya. For feature extraction, PCA transformation and MNF transformation are accomplished by ERDAS Imagine and ENVI software. For the comparison and assessment on the effect of feature selection and feature extraction, land cover classification is performed by CCC. The overall accuracy of CCC using the firstly selected 60 bands is 71.8%, the highest classification accuracy acquired by CCC is 79.0% as the case that executes CCC after appling Noncovariance Bhattacharyya. In conclusion, as a matter of fact, only Noncovariance Bhattacharyya separability decision method was valuable as feature selection algorithm for hyperspectral image classification depended on CCC. The lassification accuracy using other feature selection and extraction algorithms except Divergence rather declined in CCC.

Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification (하이퍼스펙트럴영상 분류에서 정준상관분류기법의 유용성)

  • Park, Min-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.885-894
    • /
    • 2006
  • The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data.