• Title/Summary/Keyword: 스퍼터링 기술

Search Result 175, Processing Time 0.04 seconds

Process Characteristics and Applications of High Density Plasma Assisted Sputtering System (HiPASS)

  • Yang, Won-Gyun;Kim, Gi-Taek;Lee, Seung-Hun;Kim, Do-Geun;Kim, Jong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.95-95
    • /
    • 2013
  • 박막 공정 기술은 반도체 및 디스플레이뿐만 아니라 대부분의 전자소자에 적용되는 매우 중요한 기술이다. 그 중, 마그네트론 스퍼터링 공정은 플라즈마를 이용하여 금속 및 세라믹 등의 벌크 물질을 박막으로 증착 가능한 가장 널리 사용되는 방법 중의 하나이다. 하지만, Fe, Co, Ni 같은 강자성체 재료는 공정이 불가능하며, 스퍼터링 타겟 효율이 40% 이하이고, 제한적인 방전압력 범위 및 전류 상승에 의한 높은 전압 인가 제한이 있다는 단점이 있다. 본 연구에서 사용된 고밀도 플라즈마 소스를 적용한 고효율 스퍼터링 시스템은 할로우 음극을 이용한 원거리에서 고밀도 플라즈마를 생성하여 전자석 코일을 통해 자석이 없는 음극으로 이온을 수송시켜 스퍼터링을 일으킨다. 따라서 강자성체 재료의 스퍼터링이 가능하며, 90% 이상의 타겟 사용 효율 구현 및 기존 마그네트론 스퍼터링 대비 고속 증착이 가능하다. 또한, $10^{-4}$ Torr 압력영역에서 방전 및 스퍼터링이 가능하다. 타겟 이온 전류를 타겟 인가 전압과 관계없이 0~4 A까지, 타겟 이온 전류와 상관없이 타겟 인가 전압을 70~1,000 V 이상까지 독립적으로 제어가능하다. 또한 TiN과 같은 질소 반응성 공정에서 반응성 가스인 질소를 40%까지 넣어도 타겟에 수송되는 이온의 양에 영향이 없다. 할로우 음극 방전 전류 40 A에서 발생된 플라즈마의 이온에너지 분포는 55 eV에서 가우시안 분포를 보였으며, 플라즈마 포텐셜인 sheath drop은 74 V 였다. OES를 통한 광학적 진단 결과, 전자석에 의한 이온빔 초점에 따라 플라즈마 이온화율을 1.8배까지 증가시킬 수 있으며, 할로우 음극 방전 전류가 60~100 A로 증가하면서 플라즈마 이온화율을 6배까지 증가 가능하다. 또한, 타겟 이온 전류와 관계없이 타겟 인가 전압을 300~800 V로 증가시킴에 따라 Ar 이온 밀도의 경우 1.4배 증가, Ti 이온 밀도의 경우 2.2배 증가시킬 수 있었으며, TiN의 경우 증착 속도도 16~44 nm/min으로 제어가 가능하다.

  • PDF

Development of surface treatment technology of aluminum extrusion die using sputtering deposition technology (스퍼터링 증착 기술을 통한 알루미늄 압출용 금형의 표면처리 기술 개발)

  • Choe, In-Gyu;Lee, Su-Yeong;Kim, Si-Myeong;Kim, Sang-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.283-284
    • /
    • 2014
  • 알루미늄 압출은 오랜 기간 산업화가 이루어져 왔으나, 최근 자동차 및 항공기의 경량화 관련하여 고력 알루미늄 압출의 필요성이 높아지고 있다. 이에 따라 고력 알루미늄의 압출을 위한 압출 공정기술과 금형 표면처리기술이 매우 필요하게 되었다. 본 연구에서는 기존의 염욕 질화 샘플과 본 연구에서 개발한 스퍼터링 증착 기술이 적용된 샘플간의 마모시험을 통한 마찰 계수를 비교하였다.

  • PDF

Magnetron Sputtering Technology의 연구 및 개발 방향에 대한 동향

  • Park, Jang-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.95-95
    • /
    • 2012
  • 스터퍼링 기술이 1852년 Grove에 의해서 최초 발견되어 1979년 Chapin에 의해서 planar magnetron cathode 개발로 진공코팅기술의 새로운 영역을 열게 되어 현재까지 디스플레이, 반도체, 태양전지, 광학산업 및 전자부품 등 나노 산업에 필수적으로 적용되고 있다. 스퍼터링 입자는 운동량 전달에 의한 것으로 운동량을 갖는 나노 스퍼터링 입자는 기판에 대한 박막의 부착력이 우수하고 대면적에 균일하고 재현성 있게 성막되는 특징을 갖고 있다. 마그네트론 스퍼터링 기술이 산업에 응용되면서 주로 4분야에서 많은 연구, 개발이 되어져 왔다. 첫째는 타겟의 고순도 및 고밀도화와 더불어 가격이 고가로 됨에 따라 타겟 사용효율의 향상이다. 플라즈마를 발생시키는 캐소드의 자기회로를 1차원, 2차원 및 회전운동을 통해서 사용효율을 향상시키고 있다. 둘째는 기판에 대해서 박막특성이 균일하도록 코팅하는 것이다. 디스플레이에서는 글래스 기판이 대면적으로 됨에 따라서 핸들링이 어려워져 여러 개의 캐소드 자기회로를 선형적으로 이동시켜 박막두께분포를 최적화하며 반응성 가스를 사용해서 균일한 특성의 박막을 제작하는 경우에는 가스분사관과 배기펌프계의 기하학적 위치 및 가스 유동학적 해석이 필요하다. 셋째는 스퍼터링 입자의 이온화로 의한 박막의 특성향상과 반도체 trench의 높은 aspect ratio hole을 채우는 것이다. 이온화 방법으로는 inductively coupled plasma (ICP), microwave amplified (MA), high power impulse (HIPI), hollow cathode magnetron (HCM), self-sustained sputtering 등이 사용되어져 왔으며 최근에는(neutral beam-assisted sputtering (NBAS)에 의한 박막특성향상 방법이 발표되고 있다. 넷째는 플라즈마 및 박막두께 시뮬레이션에 대해서 많은 발표가 되고 있다. 본 발표에서는 상기의 4 분야를 포함한 향후 개발방향에 대해서 소개할 예정이다.

  • PDF

마그네트론 스퍼터링의 전산모사

  • Heo, Min-Yeong;Yang, Bu-Seung;Bae, Hyo-Won;Yu, Dong-Hun;Lee, Hae-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.496-496
    • /
    • 2012
  • Sputtering은 박막의 품질(부착력, 밀도, 균일도등)이 우수하고 대면적 증착이 용이하여 반도체, 디스플레이, MEMS기술등과 같은 첨단산업에서 널리 이용되고 있는 증착방법이다. 일반적인 평판형 스퍼터건은 전계와 자계가 직교하는 Target의 일부영역에서만 스퍼터링 현상이 발생하게 되어 증착물질의 사용효율이 20~30% 정도로 좋지 못하고 스퍼터링 되지않는 부분에서는 재증착 현상에 의한 파티클 발생을 유발하여 Substrate에 손상을 입혀 박막의 질을 떨어뜨리게 된다. 본 연구에서는 이러한 문제점들의 물리적 현상의 진단 및 최적화를 위해 Particle-In-Cell (PIC)시뮬레이션을 이용하여 그 특성들을 알아보았다. 인가전압, 압력, 증착물질과 기판사이의 거리를 변화시켜 자기장이 포함된 Paschen curve를 그렸다. 전기장만이 포함된 시스템에서의 Paschen curve는 이미 공식으로 알려져 있으며 마그네트론 스퍼터링의 시스템에서 Paschen curve와 비교하여 보다 낮은 압력에서 플라즈마가 형성할 수 있는 것을 확인하였다. 또한 Target에 충돌하는 아르곤이온의 양, 에너지 분포, 각도의 분포 등을 관찰하였는데, 대부분의 아르곤이온은 압력이 증가할수록 에너지가 큰 경향성을 가지며 입사각도는 Target에 보다 수직으로 충돌하는 경향을 볼 수 있었다. 증착물질과 기판사이의 거리의 변화에 대해서는 이온 특성의 변화는 없었다.

  • PDF

스퍼터링 소스를 이용하여 빗각 증착되어진 TiN 박막의 형상 및 특성 연구

  • Song, Min-A;Yang, Ji-Hun;Jeong, Jae-Hun;Kim, Seong-Hwan;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.165.2-165.2
    • /
    • 2016
  • 빗각 증착이란 입사 증기가 기판에 수직하게 입사하는 일반적인 공정과는 다르게 증기가 기판의 수직선과 $0^{\circ}$이상의 각을 갖는 증착 방법을 의미한다. 본 연구는 공정 압력이 비교적 높은 스퍼터링 공정에서 빗각 증착을 실시하여 코팅층의 구조제어가 가능한지를 확인하였다. 본 연구에서는 조직의 치밀도 향상을 통한 특성 향상을 위해 TiN 박막을 제조함에 있어서 빗각 증착 기술을 응용하여 단층 및 다층 피막을 제조하고 그 특성을 비교하였다. 스퍼터 소스에 장착된 타겟의 크기는 6"이며, 99.5% Ti 타겟을 사용하였고, Ar 가스 분위기에서 기판으로 사용된 Si(100) 위에 코팅하였다. 기판과 타겟 간의 거리는 10 cm이며, 기판은 알코올과 아세톤으로 초음파 세척을 실시한 후 진공챔버에 장착하고 < $2.0{\times}10-5Torr$ 까지 진공배기를 실시하였다. 진공챔버가 기본 압력까지 배기되면 Ar 가스를 주입한 후 RF 파워에 약 300V의 전압을 인가하여 글로우 방전을 발생시키고 약 30분간 청정을 실시하였다. 기판의 청정이 끝난 후 다시 < $2.0{\times}10-5Torr$까지 진공배기를 한 후 Ar 가스를 주입하여 TiN 코팅을 실시하였다. 빗각 증착을 위한 기판의 회전각은 $70^{\circ}$, $80^{\circ}$$-70^{\circ}$, $-80^{\circ}$이며, TiN 박막의 총 두께는 약 $3.5{\sim}4{\mu}m$로 유지하였다. 스퍼터링을 이용한 TiN 박막의 빗각 증착 코팅을 실시하였으며, 공정조건에 따라 주상정이 자라는 모습과 기울어진 각도가 다른 구조를 갖는 박막이 제조되는 것을 확인할 수 있었다. 빗각증착을 실시하는 중에 기판 홀더에 약 -100 V의 전압을 인가하면 인가하지 않은 막에 비해 치밀한 박막이 성장한다는 사실을 확인하였다. 박막의 성능향상을 위하여 스퍼터 시스템에서 빗각 증착을 이용한 TiN 박막 형성을 실시하였다. SEM 단면 이미지에서 확인해본 결과 주상정이 자라는 형상이 공정 압력이 5 mTorr에서 2 mTorr로 낮아짐에 따라 상대적으로 치밀하면서 일정한 형태로 성장하는 것을 확인하였다. 본 연구를 통해 스퍼터링을 이용한 빗각 증착의 Structure Engineering 이 가능함을 확인하였으며 박막의 성능을 향상시키는 기술로서 응용 가능할 것으로 보인다.

  • PDF

Studies on the Micro Structure of Unbalanced Magnetron Sputtered Zn-Mg Thin Films (비대칭 마그네트론 스퍼터링으로 합성된 Zn-Mg 박막의 미세조직에 관한 연구)

  • Ra, Jeong-Hyeon;Kim, Beom-Seok;Lee, Sang-Yul;Hong, Seok-Jun;Kim, Tae-Yeop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.127-127
    • /
    • 2012
  • 비대칭 마그네트론 스퍼터링을 이용하여 다양한 공정조건에서 조성을 변화시키며 Zn-Mg 합금 박막을 합성하였으며, 합성된 박막의 기초특성 분석을 실시하였다. 기존의 마그네트론 스퍼터링 공정으로 낮은 Mg 조성의 Zn-Mg 박막을 합성 할 경우 porous한 박막이 합성 되었다. 본 연구에서는 모든 조성의 Zn-Mg 박막의 치밀화를 위하여 차별화된 박막 합성 기술을 연구하였다. 본 연구에서 개발된 박막 합성 기술을 적용하여 Zn-Mg 박막을 합성 한 결과 3wt.% Mg 타겟을 이용하여도 치밀한 조직의 박막을 합성할 수 있었다. Zn-Mg 박막의 경도는 박막의 Mg 조성이 높을수록 증가하여 최고 403.1Hv를 나타냈다.

  • PDF

물리적 기상증착법을 이용한 내지문(Anti-Finger Print) 코팅 최적 공정 및 박막특성분석

  • Kim, Wang-Ryeol;Kim, Hyeon-Seung;Jeong, U-Chang;Gwon, Min-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.489-489
    • /
    • 2013
  • AF 코팅은 유리나 플라스틱과 같은 기재 표면을 특수 처리하여 지문과 같은 오염물질의 부착방지와 오염물질이 부착되더라도 쉽게 제거 가능하도록 하는 기술이다. 전자, 자동차, 건축, 섬유, 철강분야 등에 활용 가능한 중요기술로 박막의 발수 발유 기능을 부여하는 표면처리 기술이고, 코팅방법에는 진공증착, 스핀코팅, 딥코팅, 플로우 코팅, 스프레이 코팅 등이 있으며, 경화 방법이나 접촉각 등의 특성이 반영된다. 터치패널 등의 지문부착방지 기술은 불소계와 비불소계 재료로 구분할 수 있지만 지문을 쉽게 지울 수 있고, 오염 방지 기능과 내구성이 있으며, 우수한 광학특성을 유지하는 것이 과제라 할 수 있다. 그리고 항균성을 부여하는 기술도 개발되고 있다. 이런 터치패널의 강화유리에 AF 코팅한 제품은 핸드폰 글래스에 처음 적용하면서부터 실생활에 도입이 시작되고 있다. 이러한 AF 코팅을 스퍼터링 법을 이용하여 증착 시켰다. 기존에는 E-beam을 이용한 증착 방식이 주를 이루었지만, 스퍼터링 법을 이용함으로써 박막의 균일화 및 대량생산이 가능해졌다. 따라서 이 연구에서는 기존의 E-beam 방식과 sputtering 공정 중 ion source에 의한 전처리의 유무에 따른 박막의 특성을 비교하였다. 내부식성, 내마모성 시험을 거친 후, 접촉각을 측정하여 알아보았으며, 박막의 건전성 및 균일성은 FE-SEM을 이용하여 관찰하였다. 실험용 장비가 아닌 실제 생산장비인 직경 1,400 파이의 장비를 이용하여 증착하였으며 염수분무 및 내마모 시험 후, 기존 접촉각의 ${\pm}5^{\circ}$ 내외임을 확인 할 수 있었고, 박막의 건전성 또한 뛰어남을 알 수 있었다.

  • PDF

Trends of Plasma Coating Technology and Its Application (플라즈마 코팅의 최신 기술동향과 응용)

  • Jeong, Jae-In;Yang, Ji-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.103.1-103.1
    • /
    • 2016
  • 플라즈마 코팅은 진공 및 진공에서 발생된 플라즈마 대기압 플라즈마를 이용하여 기판에 코팅하는 기술을 의미하는 것으로 최근 다양한 코팅 소스 및 물질계가 개발되면서 그 응용을 넓혀가고 있다. 플라즈마 코팅은 물리증착 및 화학증착에서 주로 이용하고 있는데 플라즈마를 이용하는 대표적인 기술로 스퍼터링과 음극아크증착, 플라즈마 화학증착 등이 있다. 스퍼터링은 기존의 마그네트론 스퍼터링에 비해 이온화율이 대폭 향상된 HIPIMS(High Power Impulse Magnetron Sputtering) 기술이 개발되면서 경질피막 제조의 신기술로 자리 잡고 있고 음극아크증착의 경우는 다양한 Filtered 아크소스가 개발되면서 후막 고경도 DLC(Diamond-like Carbon) 등 기존의 방법으로 달성할 수 없었던 코팅층의 제조가 가능하게 되었다. 최근 수명 및 물성이 크게 향상된 소재들이 다양하게 개발되었는데 이들 소재는 가공이 잘 되지 않는 난삭재가 대부분이어서 기존의 가공 Tool이 한계를 드러내고 있다. 이에 따라 난삭재 가공용 새로운 Tool에 대한 수요가 크게 증가하고 있는데 이에 대응하는 유력한 방법 중의 하나가 플라즈마를 이용한 경질코팅이다. 이렇듯 플라즈마 코팅은 난삭재가공용 Tool을 비롯하여 기계나 자동차 부품의 고경도, 저마찰 코팅, 기능성 코팅 등 다양한 분야에 응용을 확대하고 있다. 본 논문에서는 플라즈마 코팅의 최신 기술개발 동향과 그 응용에 대해 고찰하고자 한다.

  • PDF

Hybrid 공정을 이용하여 코팅 된 TiAlSiN 박막의 특성 연구

  • Kim, Seong-Hwan;Yang, Ji-Hun;Byeon, In-Seop;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.130-130
    • /
    • 2018
  • 산업 발전으로 특수합금들이 발달함에 따라 가공할 수 있는 새로운 절삭공구소재들이 개발되어지고 있다. 또한 공구소재보다 코팅개발이 상대적으로 더욱 효과적이기 때문에 코팅 기술 개발이 활발히 진행되고 있다. 일본에서는 새로운 코팅층 물질 개발보다는 기존의 코팅물질을 조합하거나 개량하여 성능을 향상시키는 추세이다. TiAlSiN 박막은 스퍼터링과 음극 아크 소스를 이용한 hybrid 공정을 이용하여 코팅 후 특성을 평가하였다. Ti-50at.%Al의 조성을 갖는 TiAl 합금 타겟은 음극 아크 소스를 이용하여 코팅하였다. 공정 가스는 Ar과 N2의 혼합 가스를 사용하였으며 공정 압력은 $1.0{\times}10^{-2}Torr$이었다. 음극 아크 소스에 인가된 전류는 70 A이었다. TiAlSiN 박막의 Si 함량을 조절하기 위해서 Si은 스퍼터링으로 코팅하였으며 스퍼터링 소스에 인가되는 전력의 세기를 0.29 kW ~ 1.05 kW까지 변화시켰다. 코팅 공정에 사용된 Si 타겟의 순도는 4N이다. TiAlSiN 박막의 Si 함량은 스퍼터링 전력에 따라 3.4 ~ 14.4at%까지 변화하는 것을 확인하였다. TiAlSiN 코팅층의 경도는 초미소 경도계를 이용하여 측정하였으며, Si 함량이 증가하면 TiAlSiN 박막의 경도도 증가하는 것을 확인할 수 있다. TiAlSiN 박막의 Si 함량이 9.2at.%일 때 3000 Hv 이상의 경도를 보였다. TiAlSiN 코팅층의 Si 함량이 14.4at%로 높아지면 경도가 낮아지는 현상을 보였다. TiAlSiN 박막의 Si 함량이 증가하면 내산화성이 향상되는 현상을 확인할 수 있었다.

  • PDF

UBM 스퍼터링을 이용한 Al 박막의 치밀도 향상 연구

  • Park, Hye-Seon;Yang, Ji-Hun;Jang, Seung-Hyeon;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.67-67
    • /
    • 2010
  • 본 연구에서는 마그네트론 스퍼터링법을 이용하여 가볍고 내구성이 뛰어난 Al을 다양한 공정 조건에서 냉연 강판에 코팅하여 코팅층의 밀도 측정으로부터 치밀도를 알아보았다. 99.95% 순도의 Al 타겟을 사용하여 강판(냉연강판)과 실리콘 웨이퍼 시편에 증착시켰다. 시편은 알코올과 아세톤으로 초음파 세척을 하였으며 진공용기에서 펄스 전원 공급 장치를 이용하여 플라즈마 청정을 약 30분간 실시하였다. 시편 청정이 끝나면 ${\sim}10^{-6}$ Torr 까지 진공 배기를 실시하고, Ar 가스를 진공용기 내로 공급하여 ${\sim}10^{-3}$ Torr로 진공도를 유지하면서 스퍼터링으로 박막 코팅을 실시하였다. 전자석에 전류를 인가하지 않은 시편의 Al 코팅층 밀도는 bulk 밀도의 81%이며 전자석에 역방향 3 A의 전류를 인가시킨 시편의 Al 코팅층 밀도는 bulk 밀도의 약 94%를 보였다. Al 코팅층의 SEM 분석 결과, 스퍼터링 파워 증가에 따라 Al 코팅층 조직에 기공이 많아지고 두께가 증가하는 경향을 보였다. 또한 전자석의 순방향 전류가 증가하면 박막의 두께가 증가하고 치밀도가 낮아지는 반면 전자석의 역방향 전류가 증가할수록 Al 코팅층의 조직은 치밀해졌으며 전자석 전류를 역방향 3 A로 고정하고 스퍼터링 파워를 변화시켜 Al을 코팅하면 타겟 인가전압 1.5 A에서 가장 치밀한 Al 코팅층 조직을 얻을 수 있었다. 가장 치밀한 조직을 갖는 $1.57{\mu}m$의 Al 코팅층은 염수분무 시작 후 약 48시간 후에도 적청이 전면적의 5% 이내로 발생하였다. 마그네트론 스퍼터링법을 이용하여 냉연강판에 Al을 증착하였고 치밀한 조직의 박막을 형성함으로써 냉연 강판의 내식성을 향상할 수 있는 공정기술을 개발하였다.

  • PDF