• Title/Summary/Keyword: 스퍼드캔

Search Result 7, Processing Time 0.02 seconds

Spudcan Design under Combined Load in Southwestern Sea of Korea (복합하중을 고려한 국내 서남해 지반에서의 Spudcan 설계)

  • Yoo, Jinkwon;Park, Duhee;Mandokhail, Saeed-ullah Jan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.13-22
    • /
    • 2016
  • An optimized spudcan was designed for the Southwestern Sea, an area mostly comprised of sand and soft clay layers. The spudcan was designed using guidelines by SNAME, ISO, and InSafeJIP, as well as the yield surface for combined loads. The probe test method was applied to define a yield surface used in estimating spudcan stability. Numerical analyses that considered vertical, horizontal, and moment loads in Southwestern Sea resulted in a design of 8 m diameter spudcan. Additionally, the empirical equations suggested by previous studies can estimate a reasonable spudcan bearing capacity at shallow depth. Each yield surface calculated from Mohr Coulomb and Hardening soil model showed different shapes, however the yield surface also grew with increasing spudcan diameter. This yield surface is a useful reference, along with site investigation results and published guidelines, to estimate the stability of a spudcan in the Southwestern Sea.

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay (모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가)

  • Yoo, Jin-Kwon;Park, Duhee;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2017
  • We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.

Shape Optimization of a Hole for Water Jetting in a Spudcan for a Jack-up Rig (잭업리그 스퍼드캔의 물 분사용 홀 형상 최적화)

  • Seong, Jeong Hyeon;Han, Dong Seop;Park, Young Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.337-342
    • /
    • 2016
  • A spudcan is mounted on the lower leg of the jack-up rig, a device for preventing a rollover of a structure and to support the structure in a stable sea floor. At the time of inserting the surface of the spud can to penetrate when the sand layer is stable and smoothly pulled to the clay layer, and at that time of recovery when uploading the spud can is equipped with a water injection device. In this study, it is significant to optimize the shape of pipelines holes for water injection device and it was set in two kinds of shape, the oval and round. Interpretation of the subject into the site of Gulf of Mexico offshore Wind Turbine Installation Vessels (WTIV) was chosen as a target platform. Using the ANSYS Workbench commercial programs, optimal design was conducted. The results of this study can be applied to the hole-shaped design of various marine structures.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

Comparison of Analysis Methods for Designed Spudcan Bearing Capacity and Penetration Behavior for Southwest Sea Soil (서남해안 해저 토질을 대상으로 설계한 스퍼드캔의 지지력 및 침투 거동 분석을 위한 해석방법 비교)

  • Jin, Haibin;Jang, Beom-Seon;Choi, Jun-Hwan;Zhao, Jun;Kang, Sung-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.175-185
    • /
    • 2015
  • Jack-up type WTIV(Wind Turbine Installation Vessel) is used to avoid the effects of waves when installing wind turbines in the Southwest Sea of South Korea. During the preloading procedure, unexpected penetration may cause some risks such as excessive penetration or punch-through failure. To ensure the safety of the WTIV during preloading, the bearing capacities should be evaluated based on the soil data at each borehole. Eight boreholes (OW-1 to -8) have been drilled in the Southwest Sea of South Korea. The bearing capacities of a spudcan designed to be used in this district are calculated using both a conventional analysis and finite element analysis with the soil properties of OW-1 to -8. A finite element analysis is carried out for OW-1, -3, and -4 to gain an in-depth understanding of the soil behavior during the penetration. OW-1, -3, and -4 are representative boreholes for a strong layer overlying a soft layer, a general soft layer, and a soft layer overlying a strong layer, respectively. The resultant bearing capacity curves versus the depth of the numerical analysis are compared with the conventional method. The results show that the conventional analysis is conservative. Case studies for different spudcan areas and shapes are also conducted to seek an appropriate spudcan type for the Southwest Sea of South Korea. Finally, a spudcan with a rectangular shape and a bearing area of $112.8m^2$ is selected.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.