• Title/Summary/Keyword: 스팸 리뷰

Search Result 6, Processing Time 0.02 seconds

A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance (크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가)

  • Lee, Seongwoon;Kim, Seongsoon;Park, Donghyeon;Kang, Jaewoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.338-343
    • /
    • 2016
  • Today, opinion reviews on the Web are often used as a means of information exchange. As the importance of opinion reviews continues to grow, the number of issues for opinion spam also increases. Even though many research studies on detecting spam reviews have been conducted, some limitations of gold-standard datasets hinder research. Therefore, we introduce a new dataset called "Paraphrased Opinion Spam (POS)" that contains a new type of review spam that imitates truthful reviews. We have noticed that spammers refer to existing truthful reviews to fabricate spam reviews. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews to create a new deceptive review. The experiment results show that classifying our POS dataset is more difficult than classifying the existing spam datasets since the reviews in our dataset more linguistically look like truthful reviews. Also, training volume has been found to be an important factor for classification model performance.

Performance Evaluation of Review Spam Detection for a Domestic Shopping Site Application (국내 쇼핑 사이트 적용을 위한 리뷰 스팸 탐지 방법의 성능 평가)

  • Park, Jihyun;Kim, Chong-kwon
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.339-343
    • /
    • 2017
  • As the number of customers who write fake reviews is increasing, online shopping sites have difficulty in providing reliable reviews. Fake reviews are called review spam, and they are written to promote or defame the product. They directly affect sales volume of the product; therefore, it is important to detect review spam. Review spam detection methods suggested in prior researches were only based on an international site even though review spam is a widespread problem in domestic shopping sites. In this paper, we have presented new review features of the domestic shopping site NAVER, and we have applied the formerly introduced method to this site for performing an evaluation.

Deep Semantic Feature based Deceptive Opinion Spam Analysis (의미 프레임 자질 기반 의견 스팸 분석)

  • Kim, Seong-Soon;Jang, Hyeok-Yoon;Lee, Seong-Woon;Kang, Jaewoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.1001-1004
    • /
    • 2015
  • 소설미디어의 급증과 함께 온라인 리뷰의 의존성이 급증하는 가운데 사용자의 올바른 의사결정을 저해하는 기만적 의견 스팸 이슈가 새롭게 주목받고 있다. 기존의 의견 스팸 연구는 실제 리뷰와 의견 스팸 간의 차이를 어휘, 품사 또는 감정단어와 같은 표면적 자질을 통해 설명하였으나 그들간의 의미적 연결관계는 고려하지 않았다. 본 논문에서는 1) 의미적 프레임 기반의 텍스트 분석기법을 제안하고, 이를 바탕으로 2) 의견 스팸과 실제 리뷰간의 의미적 차이가 있음을 규명하며 3) 새로운 의미적 프레임 자질을 사용하여 기존의 의견 스팸 분류 성능을 향상시킬 수 있음을 보인다.

Classification of Advertising Spam Reviews (제품 리뷰문에서의 광고성 문구 분류 연구)

  • Park, Insuk;Kang, Hanhoon;Yoo, Seong Joon
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.186-190
    • /
    • 2010
  • 본 논문은 쇼핑몰의 이용 후기 중 광고성 리뷰를 분류해 내는 방법을 제안한다. 여기서 광고성 리뷰는 주로 업체에서 작성하는 것으로 리뷰 안에 광고 내용이 포함되어 있다. 국외 연구 중에는 드물게 오피니언 스팸 문서의 분류 연구가 진행되고 있지만 한국어 상품평으로부터 광고성 리뷰를 분류하는 연구는 아직 이루어지지 않고 있다. 본 논문에서는 Naive Bayes Classifier를 활용하여 광고성 리뷰를 분류하였다. 이때 확률 계산을 위해 사용된 특징 단어는 POS-Tagging+Bigram, POS-Tagging+Unigram, Bigram을 사용하여 추출하였다. 실험 결과는 POS-Tagging+Bigram 방법을 이용하였을 때 광고성 리뷰의 F-Measure가 80.35%로 정확도 높았다.

  • PDF

Survey on Fake Review Detection of E-commerce Sites (전자 상거래 사이트의 가짜 리뷰 판별 기법 조사)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.79-81
    • /
    • 2014
  • People increasingly rely on sources of information from E-commerce reviews. Product reviews is an important determinant of potential customers' buying choices. They are also utilized by product manufacturers to find problems of their products and to collect competitive intelligence information about their competitors. Unfortunately, it is well-known that many online product reviews are not made by genuine costumers of products. Reviewers could write some undeserving positive reviews to promote or fake negative reviews to defame some certain product, and we call them fake product reviews. Fake product review detection makes an attempt to detect fake reviews and removes them to restore the truthful ones for readers. To the best of our knowledge, there is still less published study on this problem. In this paper, we make a survey and an attempt to give a brief overview on fake product review detection. The related work of fake product review detection is presented including web spam and spam email. Then some methods to detect fake reviews are introduced and summarized. The trend of fake product review detection is concluded finally.

  • PDF

Incremental SVM for Online Product Review Spam Detection (온라인 제품 리뷰 스팸 판별을 위한 점증적 SVM)

  • Ji, Chengzhang;Zhang, Jinhong;Kang, Dae-Ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.89-93
    • /
    • 2014
  • Reviews are very important for potential consumer' making choices. They are also used by manufacturers to find problems of their products and to collect competitors' business information. But someone write fake reviews to mislead readers to make wrong choices. Therefore detecting fake reviews is an important problem for the E-commerce sites. Support Vector Machines (SVMs) are very important text classification algorithms with excellent performance. In this paper, we propose a new incremental algorithm based on weight and the extension of Karush-Kuhn-Tucker(KKT) conditions and Convex Hull for online Review Spam Detection. Finally, we analyze its performance in theory.

  • PDF