• Title/Summary/Keyword: 스팀플라즈마

Search Result 11, Processing Time 0.031 seconds

The effect of steam plasma torch and EMCR for removal of boron in UMG-Si (UMG-Si 내 Boron 제거를 위한 스팀플라즈마와 전자기연속주조정련법의 활용)

  • Moon, Byungmoon;Kim, Byungkwon;Lee, Homoon;Park, Dongho;Yu, Taeu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.57.2-57.2
    • /
    • 2010
  • 최근 친환경적이고 저투자비용의 빠른 생산성을 가진 야금화학적인 방법으로의 태양전지급 실리콘 생산공정이 빠르게 성장하고 있다. 이로 인해 금속급 실리콘(MG-Si)에서부터 태양전지급 실리콘(SoG-Si)으로의 정련공정 또한 많은 연구가 진행되고 있다. 본 연구에서는 UMG-Si 내 주요 불순물인 Boron함량을 SoG-Si 순도로 정련하는 것을 목표로 기존의 방법과 달리 전자기연속주조정련법을 사용하여 도가니 비접촉식 용융 후 스팀플라즈마토치를 통해 Boron을 제거하고자 하였다. 실험에 사용한 가스 유량은 $H_2O$ 0.3~1.0ml/min, $H_2$ 20~40ml/min 이며 실험 후 ICP-MASS 분석 결과 초기 Boron 함량 2.9ppm으로부터 0.17ppm으로 줄었음을 확인하였다.

  • PDF

Experimental Investigation of Steam Plasma Characteristics for High Energy Density Metal Powder Ignition Using Optical Emission Spectroscopy Method (OES 방법을 이용한 고에너지 금속 분말 점화용 스팀 플라즈마 특성에 관한 실험적 고찰)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.545-550
    • /
    • 2012
  • High Energy density metal powder has high melting point of oxide film. By this, the ignition source that can make a thermal effect of high-temperature during short time is needed to overcome ignition disturbance mechanism by oxide film. So effective ignition does not occurred with hydrocarbon ignitor, $H_2-O_2$ ignitor, high power laser. But steam plasma can be generate about 5000 K temperature field in short order. Because a steam plasma uses steam as the working gas, it is environmental-friendly and economical. Therefore in this study, we analyze steam plasma temperature field and radical species with optical emission spectroscopy method in order to apply steam plasma ignitor to metal combustion system and cloud particle ignition was identified in visual.

  • PDF

Temperature Field and Emission Spectrum Measurement of High Energy Density Steam Plasma Jet for Aluminum Powder Ignition (알루미늄 분말 점화용 고밀도 스팀 플라즈마 제트 온도장 및 방출 스펙트럼 측정)

  • Lee, Sanghyup;Lim, Jihwan;Lee, Dohyung;Yoon, Woongsup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.26-32
    • /
    • 2014
  • In this study, DC (Direct current) type steam plasma igniter is developed for effective ignition of high-energy density metal aluminum and gas temperature is measured by emission spectrum of OH radical. Because of the ultra-high gas temperature, the DC plasma jet is measured by Boltzmann plot method which is the non-contact optical technique and spectrum comparison-analysis. And both methods were applied to experiment after accurate verification. As a result, we could identify that plasma jet temperature is 2900 K ~ 5800 K in the 30 mm range from the nozzle tip.

Operation Characteristics of a Plasma Reformer for Biogas Direct Reforming (바이오가스 직접 개질을 위한 플라즈마 수소 추출기 운전 특성 연구)

  • Byungjin Lee;Subeen Wi;Dongkyu Lee;Sangyeon Hwang;Hyoungwoon Song
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.404-411
    • /
    • 2023
  • For the direct reforming of biogas, a three-phase gliding arc plasma reformer was designed to expand the plasma discharge region, and the operation conditions of the plasma reformer, such as the S/C ratio, the gas flow rate, and the plasma input power, were optimized. The H2 production efficiency is increased at a lower specific plasma input energy density, but byproducts such as CXHY and carbon soot are generated along with the increase in H2 production efficiency. The formation of byproducts is decreased at higher specific plasma input energy densities and S/C ratios. The optimized operation conditions are 5.5 ~ 6.0 kJ/L for the specific plasma input energy density and 3 for the S/C ratio, considering the conversion efficiency, H2 production, and byproduct formation. It is expected that the H2 production efficiency will improve with the decrease in fuel consumption in biogas burners because the heat generated from plasma discharge heats up the feed gas to over 500 ℃.

Production of solar grade silicon by using metallurgical refinement (야금학적 정련 통합 공정을 이용한 태양전지용 실리콘 제조 기술)

  • Jang, Eunsu;Park, Dongho;Moon, Byung Moon;Min, Dong Jun;Yu, Tae U
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.54.2-54.2
    • /
    • 2011
  • 야금학적 정련 공정 중 슬래그 처리, 일방향 응고, 플라즈마-전자기유도용해 공정을 적용한 태양전지용 실리콘 제조 기술에 관한 연구를 수행하였다. 원소재인 금속급 실리콘을 제조하기 위해원재료로 규석, 코크스(Cokes), 숯, 그리고 우드칩(Wood chip)을 사용하였으며, 150kW급 DC 아크로(Arc furnace)를 이용하여 순도 99.8% 금속급 실리콘을 제조하였다. 제조된 용융 상태의 금속급 실리콘은 슬래그와 반응시켜 불순물을 제거하였다. SiO2-CaO-CaF2 계의 슬래그를 이용하였으며, 금속급 실리콘과 슬래그의 질량비 및 반응 시간에 따른 실리콘 불순물 특성을 평가하였다. 이후 고액 계면이 제어 가능한 일방향 응고 장치를 이용하여 금속불순물을 제거하였다. 고액상태의 온도 조건 및 응고 시간에 따른 불순물 농도 변화를 평가하였으며, 순도 6N급의 실리콘을 제조하였다. 마지막 공정으로 스팀 플라즈마 토치와 냉도가니가 적용된 전자기 유도 용해장치를 이용하여 붕소와 인을 제거하였다. 플라즈마 토치 가스로는 아르곤, 스팀, 수소를 이용하였다. 붕소와 인의 제거율은 각각 94%와 96%를 달성하였으며, 최종 순도 6N급의 실리콘을 제조하였다.

  • PDF

Ignition Characteristics of Aluminum Metal Powder Fuel with Thermal Plasma (플라즈마를 이용한 분말형 금속 연료 알루미늄의 점화 특성)

  • Lee, Sang-Hyup;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.737-744
    • /
    • 2011
  • The success of continuous aluminum powder combustion with steam plasma is different from hydrocarbon ignition source. Ignition characteristics of aluminum powder with high temperature thermal plasma is studied with oxidizer-free environment. Experiment with argon plasma has same temperature conditions at 4500 K and particle feeding condition for previous combustion test with steam plasma and swirl combustor. The temperature of the plasma was measured using Optical Emission Spectroscopy method. Ignition characteristics were analyzed by SEM image and EDS. Aluminum powder with plasma has rapid evaporation mechanism contrast to hydrocarbon ignition source. It enhances to aluminum powder effective ignition characteristics.

  • PDF

Electrodelss Plasma Torch Powered by Microwave and Its Applications (무전극 마이크로웨이브 플라즈마 토치와 응용)

  • Hong, Yong-Cheol;Jun, Hyung-Won;Lho, Tai-Hyeop;Lee, Bong-Ju;Uhm, Han-Sup
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.889-892
    • /
    • 2009
  • A microwave plasma torch at the atmospheric pressure by making use of magnetrons operated at the 2.45 GHz and used in a home microwave oven has been developed. This electrodeless torch can be used to various areas, including industrial, environmental and military applications. Although the microwave plasma torch has many applications, we in the present work focused on the microwave plasma torch operated in pure steam and several applications, which may be used in future and right now. For example, a high-temperature steam microwave plasma torch may have a potential application of the hydrocarbon fuel reforming at one atmospheric pressure. Moreover, the radicals including hydrogen, oxygen and hydroxide molecules are abundantly available in the steam torch, dramatically enhancing the reaction speed. Also, the microwave plasma torch can be used as a high-temperature, large-volume plasma burner by injecting hydrocarbon fuels in gas, liquid, and solid into the plasma flame. Lastly, we briefly report an underway research, which is remediation of soils contaminated with oils, volatile organic compounds, heavy metals, etc.

  • PDF

Chlorodifluoromethane (CHClF2) Thermal Decomposition by DC Nitrogen Plasma (질소 플라즈마 공정을 이용한 염화이불화메탄(CHClF2) 열분해)

  • Ko, Eun Ha;Yoo, Hyeonseok;Jung, Yong-An;Park, Dong-Wha;Kim, Dong-Wook;Choi, Jinsub
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.171-176
    • /
    • 2017
  • The nitrogen plasma thermal decomposition and recovery processes for $CHClF_2$ (Chlorodifluoromethane) refringent were investigated. The steam generator was employed to provide superheated steam reactor, supporting the decomposition reaction of refringent. Even though over 94% of R-22 was decomposed on the condition of 60 A and 9.0 kW, a higher power and specific energy density were required to achieve the complete combustion of carbon materials. In the operating condition of 60 A and 12.6 kW, $O_2$/R-22 ratio in reactants gases are a key factor to obtain much higher decomposition ratio during process. It should be noticed that injecting the mixture of $O_2$ and air was much more effective than injecting the air consisting equivalent $O_2$ amount.