• Title/Summary/Keyword: 스팀주입

Search Result 25, Processing Time 0.021 seconds

Numerical Analysis of NAPL Removal from Soil and Groundwater Using Steam Injection (토양 및 지하수에서의 NAPL 제거를 위한 스팀주입 수치해석)

  • Lee, Sang-Il
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.667-674
    • /
    • 1998
  • Numerical models simulating the process of NAPL from contaminated soil or groundwater through steam injection can be a useful tool for designing and evaluating the cleanup strategy under various field conditions. One and two dimensional numerical analyses were conducted based on the governing equations describing the NAPL removal as a non-isothermal, multi-phase and multi component process. Relatively good agreements were obtained between the numerical results and the observations from one-dimensional laboratory experiment, except some discrepancy due to experimental difficulties. Simulation effectively identified the steam displacement process of xylene floating on the water table and TCE sinking on the aquifer bottom in a two-dimensional analysis. Overall, simulation models have a high potential in the design/appraisal of a system for field application of the technique as well as in the examination of complex processes such as vaporization which is hard to identify experimentally.

  • PDF

A Comparative Study on the Measures Determining Optimal SAGD Locations Based on Geostatistical and Multiphysics Simulations (지구통계 및 다중 유체 거동 모사에 근거한 스팀주입중력법 적용 최적지 결정 척도 개발 연구)

  • Kwon, Mijin;Jeong, Jina;Lee, Hyunsuk;Park, Jin Beak;Park, Eungyu
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.225-238
    • /
    • 2017
  • In this study, two viable measures of mean length and cumulative thickness of sand layers as important spatial statistics responsible for optimal SAGD (Steam Assisted Gravity Drainage) location for oil sand development were compared. For the comparisons, various deposits composed of sand and clay media were realized using a geostatistical simulator and the extent of steam chamber is simulated using multiphysics numerical simulator (dualphase flow and heat transfer). Based on the spatial statistics of each realization and the corresponding size of simulated steam chamber, the representativeness of two candidate measures (cumulative thickness and mean length of permeable media) were compared. The results of the geostatistical and SAGD simulations suggest that the mean length of permeable media is better correlated to the size of steam chamber than the cumulative thickness. Given those two-dimensional results, it is concluded that the cumulative thickness of the permeable media alone may not be a sufficient criterion for determining an optimal SAGD location and the mean length needs to be complementarily considered for the sound selections.

NAPL Removal from Contaminated Soil Using Steam Injection (스팀주입에 의한 토양내 NAPL 제거 실험)

  • Lee, Sang-Il;Jang, Yeon-Su;Kim, Seon-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.459-465
    • /
    • 1997
  • The possibility of NAPL removal from contaminated soil was studied using the steam injection technique. Both single (octane, toluene and xylene) and composite NAPL (gasoline) were used as contaminant. Soils used in this study were Chumunjin fine sand and weathered granitic soil, both of which are commonly found in Korea. Experimental results showed that with 1 pore volume steam injection, the NAPL removal rate was in the range of 66∼78% for sand and 45∼73% for weathered granitic soil. The steam injection technique seems to have high potential for soil remediation with advantages of relatively short operating time and no side-effect. Rise in the background temperature led to the delay of steam condensation and the increase of NAPL mobility, which resulted in the improvement of removal efficiency. In addition, water flooding after steam injection turned out to be a very efficient way of removing NAPL residual in the soil pores.

  • PDF

Effect of CO2 Injection in SAGD Process for Oil Sand Bitumen Recovery (고온 고압 스팀을 주입하는 SAGD 공정에서 CO2주입이 오일샌드 역청 회수율에 미치는 영향)

  • Song, Byung Jin;You, Nansuk;Lee, Jae Hoon;Lee, Chul Wee
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.262-267
    • /
    • 2014
  • SAGD (steam assisted gravity drainage) process is the most commonly used in-situ technology for the recovery of bitumen from oil sand. It was investigated that the effects of different additives on bitumen recovery rate from oil sand in SAGD process among many possible mechanisms studied throughout the study. Bitumen recovery from thin layer oil sand reservoirs was simulated by using an experimental SAGD apparatus with scale of 150:1. To improve the simulation accuracy of thin layer oil reservoir, we have attached geological model (GM). Oil sand was simulated by using a mixture of extra heavy oil and glass beads with a diameter of 1.5 mm. $CO_2$ was used as an additive and the evolution of steam chambers were closely monitored, and the effects of $CO_2$ as an additive was investigated. Two types of injection methods were tested; continuous ($cCO_2$-SAGD) and sequential interruption ($sCO_2$-SAGD) $CO_2$ injection. For the $sCO_2$-SAGD experiment, it was observed that the recovery rates and CSOR were efficiently improved control experiment from 60.2% to 69.3% and 7.1 to 6.0, respectively, whereas $cCO_2$-SAGD experiment decreased from 60.2% to 57.6% and 7.1 to 7.3.

Hydrogen Production from Biomass Tar by Catalytic Steam Reforming (바이오매스 타르로부터 수소생산을 위한 촉매 개질 특성 연구)

  • Yoon, Sang-Jun;Choi, Young-Chan;Kim, Yong-Gu;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.598-601
    • /
    • 2007
  • 셀룰로오스, 헤미셀룰로오스, 리그닌으로 구성된 목질계 바이오매스를 이용한 가스화의 경우 30%의 리그닌 성분이 열에 안정한 상태인 타르로 형성되면서 가스화 후단공정에서의 정제, 발전 등에 직접 사용하기 어려우며, 가스화 효율을 저하시키는 원인이 된다. 이의 문제 해결을 위하여 본 연구에서는 촉매를 이용한 수증기 개질 반응을 통하여 타르를 합성가스로 개질시킬 수 있는 방법을 모색하기 위하여 다양한 온도, 촉매, 스팀 주입량 및 촉매크기에 따른 전환율, 생성가스 특성을 알아보았다. 타르 대상 물질로는 타르 내 상당부분을 차지하고 있는 톨루엔을 이용하였다. 일반적으로 반응온도, 스팀 주입량이 증가할수록 수소 생성량이 증가하였으며, 지르코니아로 증진된 니켈 촉매의 경우 600$^{\cdot}C$ 에서도 100%의 높은 전환율을 보였다. 일반적인 가스화기에서 배출되는 타르의 농도보다 10배 높은 조건에서도 100%의 높은 전환율을 얻을 수 있었으며, 이를 통하여 실제 공정으로의 적용시에도 후단 공정의 부담을 줄일 수 있는 개질기로 적용 가능할 것으로 보인다.

  • PDF

CFD Modeling for 300MW Shell-Type One-Stage Entrained Flow Coal Gasifier : Effect of $O_2$/Steam/Coal Ratios, Coal Particle Sizes, and Inlet Angles on the Gasifier Performance (300MW급 Shell형 1단 분류층 석탄 가스화기의 전산수치해석 : 산소/스팀/석탄 주입비, 석탄입자 크기, 주입 노즐 각도가 가스화기 성능에 미치는 영향)

  • Song, Ji-Hoon;Kang, Min-Woong;Seo, Dong-Kyun;Lim, Sung-Jin;Paek, Min-Su;Hwang, Jung-Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.3
    • /
    • pp.227-240
    • /
    • 2010
  • Coal gasification is heading for a great future as one of the cleanest energy sources, which can produce not only electricity and heat, but also gaseous and liquid fuels from the synthesis. The work focuses on 300MW shell type one-stage entrained flow coal gasifier which is used in the Integrated coal Gasification Combined Cycle(IGCC) plant as a reactor. As constructing an IGCC plant is considerably complicated and expensive compared with a pulverized-coal power plant, it is important to determine optimum design factors and operating conditions using a computational fluid dynamics (CFD) model. In this study, the results of numerical calculations show that $O_2$/Coal ratio, 0.83, Steam/Coal ratio, 0.05, coal particle diameter, $100{\mu}m$, injection angle, $4^{\circ}$ (clockwise) are the most optimum in this research.

고압 Thermogravimetry를 이용한 석탄의 고압가스화 특성분석

  • ;;W. McClennen
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.27-32
    • /
    • 1995
  • 석탄가스화 복합발전은 최소 14기압이상의 가압상태에서 석탄을 가스화시킨다. 이에 따른 가압상태의 석탄가스화반응을 규명하기 위하여 고압 Thermogravimetry를 사용하여 열분해특성을 측정하였고, 생성물질은 on-line으로 연결한 Gas Chromatography/Mass Spectrometry로 분석하였다. 가압상태에 따른 열분해특성은 char 분해반응 단계에서 현격한 차이를 나타내었고, 수증기 주입에 따른 가스화반응에 의하여 80$0^{\circ}C$이상에서 큰 질량변화 차이를 보여줌을 확인하였다. 또한, Pittsburgh탄에서는 가압의 조건이 bitumen의 열분해시작을 늦추고 스팀은 전 열분해반응에서 방출되는 나프탈렌의 양을 증가시킨다. 유시 벨리탄에서는 char의 가스화에 의하여 나프탈렌 및 벤젠류의 발생이 스팀이 없는 상태에 비해 지연되었다.

  • PDF

Synthesis of hydrophobic NaY Zeolite and properties of dealumination (소수성 NaY Zeolite의 합성과 탈알루미나의 특성)

  • 서동남;하종필;구상모;이해진;김익진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2000.10a
    • /
    • pp.36-38
    • /
    • 2000
  • NaY형 Zeoilte는 현재 그들의 촉매적 특성과 흡착성 그리고 이온 교환성들을 이용하여 산업에 중요하게 사용되어지고 있다 본 실험은 고온 스팀을 이용한 방법과 산처리에 의한 방법으로 탈알루미나의 효과를 확인하는 실험을 하였다 먼저 SiO₂/Al₂O₃ 몰비가 4-6인 합성 NaY zeolite를 분위기 소성로에 넣고 증기발생 장치를 이용하여 500℃에서 고온 스팀을 분위기 소성로에서 일정하게 주입하였다. 에에 따른 결과는 탈알루미나 처리 후의 XRF와 BET의 결과로 탈알루미나 처리에 따라서 SiO₂/Al₂O₃의 몰비가 20.6에서 21까지 증가한 것을 알 수 있으며 또한 BET의 결과에서 탈알루미나 처리에 의해서 비표면적이 증가한 것을 확인할 수 있으며 특히 meso pore area의 증가는 탈알루미나에 의해서 zeolite의 골격구조가 일부 파괴되었음을 알 수 있다.

Steam Gasification Characteristics of Oil Sand Coke in a Lab-Scale Fixed Bed Gasifier (실험실 규모의 고정층 가스화기에서 오일샌드 코크스의 수증기 가스화 특성)

  • Yoon, Sang Jun;Choi, Young-Chan;Lee, See-Hoon;Lee, Jae Goo
    • Applied Chemistry for Engineering
    • /
    • v.20 no.1
    • /
    • pp.62-66
    • /
    • 2009
  • Utilization and interest of unconventional fuel and process residue such as oil sand and its residue, oil sand coke, have been increased because of the continuous rise of fuel price and conventional fuel availability. In this study, the gasification of oil sand coke produced from coking process of oil sand was performed to utilize as an energy resource using lab-scale fixed bed gasification system. The combustion characteristics of oil sand bitumen and oil sand coke were investigated by using TGA and lab-scale gasification system was applied to reveal the characteristics of produced syngas composition with oxygen/fuel ratio, temperature and steam injection rate. Oil sand coke shows a high carbon content, heating value and sulfur content and low ash content and reactivity. In case of oil sand coke gasification, generally with increasing temperature, the amount of steam introduced and decreasing oxygen injection rate, $H_2$ content in product gas increased while the $CO_2$ content decreased. The calorific value of syngas shows about $2100kcal/Nm^3$ and this result indicates that the oil sand coke can be used as a resource of hydrogen and fuel.